Reduction of Intracochlear Trauma and Fibrosis Using Dual Network, Zwitterionic Hydrogel Thin Films on Cochlear Implant Surfaces
使用人工耳蜗表面上的双网络两性离子水凝胶薄膜减少耳蜗内创伤和纤维化
基本信息
- 批准号:10659699
- 负责人:
- 金额:$ 56.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-04 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcoustic NerveAcousticsAdhesionsAuditoryBacteriaBacterial AdhesionBiocompatible MaterialsBiologicalCadaverCell AdhesionCellsChemicalsCicatrixClinicalCochleaCochlear ImplantsComplexDataDevelopmentDevicesDexamethasoneDrug Delivery SystemsEffectivenessElectric StimulationElectrophysiology (science)EngineeringEquilibriumFibrosisFilmForeign BodiesFractureFrictionFundingGlucocorticoidsGlycolatesHealthHearingHistologicHousingHumanHydrogelsImplantImplanted ElectrodesInflammationInflammatoryKineticsLegal patentMasksMeasuresMechanicsMedical DeviceMembrane ProteinsMethodsMicrospheresModelingModulusMusMusicPatientsPerformancePlatinumPolymersProcessPropertyProteinsReactionReporterResidual stateResistanceResolutionSafetySignal TransductionSilasticStaphylococcus aureusStructureSurfaceSurface PropertiesSystemTechnologyTestingThickThinnessTissuesTransducersTranslationsTraumaWaterWorkX ray microscopycapsulecombatcrosslinkdeafdensityelectric impedanceflexibilityfunctional improvementhearing impairmenthearing restorationimplant coatingimplant materialimplantationimprovedlearning materialsmechanical propertiesmedical implantmouse modelneuroprosthesisnew technologynovelnovel therapeuticspolycaprolactonepolymerizationpre-clinicalpreservationpreventradiological imagingresponsesheep modelspeech in noisesurface coating
项目摘要
Project Summary
Cochlear implant (CI) electrode arrays are made of platinum wires and contacts encased in a silastic housing.
These materials provide mechanical stability and flexibility critical to the long-term function of the CI. However,
they also induce local tissue reactions that can have detrimental effects. For example, trauma from insertion of
the CI can damage cochlear health and any residual acoustic hearing. Further, the fibrotic capsule that
encases CI electrode arrays leads to increased impedances and decreased signal resolution which reduce CI
effectiveness. Intracochlear fibrosis is also implicated in the loss of acoustic hearing that can occur months to
years after implantation. Thus, developing materials that mitigate insertion trauma and the inflammatory,
fibrous response to CI materials could significantly improve device function and safety. Ultra-low fouling
zwitterionic polymers are a new class of materials that show significant promise to eliminate fibrosis. However
as bulk materials they lack mechanical properties and long term durability suitable for use in CIs. To leverage
the ultra-low fouling surface properties of zwitterionic polymers while maintaining the proven mechanical
properties of current CI materials, we recently established a novel, patented photochemical process for
simultaneous polymerization, grafting and cross-linking of zwitterionic thin films on relevant CI materials. We
now leverage the mechanical advantages of recently developed dual network polymer technology to enhance
the strength of the thin films. We also use the thin films as novel drug delivery platforms with controlled and
sustained kinetics. We hypothesize that robust dual network, zwitterionic thin film coatings will maintain long-
term anti-fouling properties; reduce friction, insertion trauma, and intracochlear fibrosis; and provide controlled
sustained release of glucocorticoids. Accordingly, in Aim 1 we engineer robust, dual network zwitterionic thin
films for ultra-low fouling CI biomaterial coatings. Aim 2 investigates the effect of dual network, zwitterionic thin
film hydrogel CI coatings on tissue friction, insertion forces, cochlear trauma, and fibrosis using human cadaver
and sheep models. Finally, Aim 3 develops zwitterionic thin film hydrogel coatings with controllable, sustained
glucocorticoid delivery systems to reduce intracochlear inflammation and fibrosis in reporter mouse CI models.
Development of robust zwitterionic thin film coatings on implanted biomaterials that are lubricious, ultra-low
fouling, and capable of controlled and sustained drug delivery represents a transformative advance to prevent
trauma, reduce fibrosis, and improve the functional outcomes associated with placement of medical devices,
such as CIs, in the body.
项目摘要
人工耳蜗(CI)电极阵列由包裹在硅橡胶外壳中的铂丝和触点制成。
这些材料提供了机械稳定性和灵活性,对CI的长期功能至关重要。然而,
它们还会引发局部组织反应,从而产生有害影响。例如,置入的创伤
CI会损害耳蜗健康和任何残留的声学听力。此外,纤维性胶囊
封闭CI电极阵列会导致阻抗增加和信号分辨率降低,从而降低CI
有效性。脉络膜内纤维化也与听力丧失有关,这种听力损失可以发生在几个月到
植入数年后。因此,开发能够减轻插入创伤和炎症的材料,
对CI材料的纤维性反应可显著改善装置的功能和安全性。超低污垢
两性离子聚合物是一种新型材料,显示出消除纤维化的重大前景。然而,
作为块状材料,它们缺乏适用于独联体的力学性能和长期耐久性。以杠杆作用
两性离子聚合物的超低污垢表面性能,同时保持已证实的机械性能
为了研究现有CI材料的性能,我们最近建立了一种新的、获得专利的光化学工艺,用于
两性离子薄膜在相关CI材料上的同时聚合、接枝和交联。我们
现在利用最近开发的双网络聚合物技术的机械优势来增强
薄膜的强度。我们还将薄膜用作新型药物输送平台,具有受控和
持续的动力学。我们假设,坚固的双网络、两性离子薄膜涂层将长期保持在
术语防污染性能;减少摩擦、插入创伤和脉络膜内纤维化;并提供受控
糖皮质激素的持续释放。因此,在目标1中,我们设计了健壮的双网络两性离子薄膜
用于超低污垢CI生物材料涂料的薄膜。目的2研究双网络两性离子薄膜的作用
膜水凝胶CI涂层对人体身体组织摩擦、插入力、耳蜗伤和纤维化的影响
还有绵羊模特。最后,目标3开发了可控、可持续的两性离子薄膜水凝胶涂层。
糖皮质激素给药系统减少报告小鼠脑梗塞模型中的脑白质炎症和纤维化。
植入型超低润滑生物材料上强韧两性离子薄膜涂层的研制
污染,并能够控制和持续的药物输送是一项变革性的进步,以防止
创伤,减少纤维化,并改善与医疗器械放置相关的功能结果,
例如顺式,在身体里。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features.
细胞内钙和环状核苷酸水平通过微观形态底物特征调节神经突引导。
- DOI:10.1002/jbm.a.35738
- 发表时间:2016-08
- 期刊:
- 影响因子:0
- 作者:Li S;Tuft B;Xu L;Polacco M;Clarke JC;Guymon CA;Hansen MR
- 通讯作者:Hansen MR
Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces.
- DOI:10.1097/mao.0000000000003288
- 发表时间:2021-12-01
- 期刊:
- 影响因子:0
- 作者:Bennion DM;Horne R;Peel A;Reineke P;Henslee A;Kaufmann C;Guymon CA;Hansen MR
- 通讯作者:Hansen MR
Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to direct neurite growth.
具有高特征频率的光聚合微图案克服了化学脉冲边界以引导神经突生长。
- DOI:10.1002/term.2527
- 发表时间:2018
- 期刊:
- 影响因子:3.3
- 作者:Tuft,BradleyW;Xu,Linjing;Leigh,Braden;Lee,Daniel;Guymon,CAllan;Hansen,MarlanR
- 通讯作者:Hansen,MarlanR
Material stiffness effects on neurite alignment to photopolymerized micropatterns.
- DOI:10.1021/bm501019s
- 发表时间:2014-10-13
- 期刊:
- 影响因子:6.2
- 作者:Tuft, Bradley W.;Zhang, Lichun;Xu, Linjing;Hangartner, Austin;Leigh, Braden;Hansen, Marlan R.;Guymon, C. Allan
- 通讯作者:Guymon, C. Allan
Neural pathfinding on uni- and multidirectional photopolymerized micropatterns.
- DOI:10.1021/am501622a
- 发表时间:2014-07-23
- 期刊:
- 影响因子:9.5
- 作者:Tuft, Bradley W.;Xu, Linjing;White, Scott P.;Seline, Alison E.;Erwood, Andrew M.;Hansen, Marian R.;Guymon, C. Allan
- 通讯作者:Guymon, C. Allan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan Guymon其他文献
Allan Guymon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan Guymon', 18)}}的其他基金
Photopolymerization-Induced Topography Directs Neurite and Schwann Cell Alignment
光聚合诱导的形貌引导神经突和雪旺细胞对齐
- 批准号:
8628102 - 财政年份:2013
- 资助金额:
$ 56.01万 - 项目类别:
Photopolymerization-Induced Topography Directs Neurite and Schwann Cell Alignment
光聚合诱导的形貌引导神经突和雪旺细胞对齐
- 批准号:
9012816 - 财政年份:2013
- 资助金额:
$ 56.01万 - 项目类别:
Reduction of intracochlear fibrosis and bacterial infection using photopolymerized durable zwitterionic coatings on cochlear implant biomaterials
使用人工耳蜗生物材料上的光聚合耐用两性离子涂层减少耳蜗内纤维化和细菌感染
- 批准号:
10348137 - 财政年份:2013
- 资助金额:
$ 56.01万 - 项目类别:
Photopolymerization-Induced Topography Directs Neurite and Schwann Cell Alignment
光聚合诱导的形貌引导神经突和雪旺细胞对齐
- 批准号:
8503972 - 财政年份:2013
- 资助金额:
$ 56.01万 - 项目类别:














{{item.name}}会员




