Machine Learning Prediction of 1-Year Mortality and Recurrence after Ischemic Stroke Using Enriched EHR data
使用丰富的 EHR 数据对缺血性中风后 1 年死亡率和复发进行机器学习预测
基本信息
- 批准号:10658513
- 负责人:
- 金额:$ 73.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-11 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArea Under CurveArtificial IntelligenceCaringCause of DeathCessation of lifeCharacteristicsClinicalClinical DataCommunitiesComplexCreativenessDataData ElementData SetDeath RateDiscriminationDisease ManagementElectronic Health RecordEvaluationFoundationsHealthHealth systemHealthcareHealthcare SystemsIndividualIschemic StrokeLow Income PopulationMeasuresModelingMulticenter StudiesOutputPatient CarePatientsPennsylvaniaPerformancePersonsPopulationPredictive ValuePreventionPublishingRaceRecurrenceRegistriesReportingResearchResearch PersonnelResource AllocationResourcesRiskRuralSample SizeScreening procedureSecondary PreventionSpecificityStandardizationStrokeSubgroupTimeValidationVariantalgorithmic biasburden of illnesscohortdata harmonizationdata integrationdata modelingdata qualitydensitydesigndisabilityelectronic health dataexperiencehigh riskimplicit biasimprovedimproved outcomeinsightmachine learning modelmachine learning predictionmodel developmentmortalitymortality risknovelnovel strategiespost strokepredictive modelingprognostic modelprospectivepublic health relevancerisk stratificationrole modelrural areasexsocial health determinantsstroke modelstroke patienttraittrendurban area
项目摘要
Machine Learning Prediction of 1-Year Mortality and Recurrence after Ischemic Stroke Using
Enriched EHR data
PROJECT SUMMARY / ABSTRACT
Stroke is the leading cause of death and disability worldwide. It has been estimated that the 1-year risk of
death and recurrence after a stroke is around 15% and 10%, respectively. Furthermore, a recent report from the
Global Burden of Diseases (GBD) has shown a substantial increase in the annual number of strokes and
secondary deaths, especially in low-income groups. Recurrent strokes, with an increasing trend, have a higher
rate of death and disability. Thus, it is imperative to identify at-risk patients for recurrence and death for proper
and timely evaluation, resource allocation, and targeted prevention. The investigators’ recently published review
indicates that ─the multiple clinical scores developed for predicting stroke recurrence have only limited clinical
utility. Similarly, current stroke prognostic models vary widely in quality; prediction models of post-stroke mortality
are limited by their validation cohort size, breadth of clinical variables, and overall usefulness. The investigators
have recently developed machine learning-based models of post-stroke all-cause mortality and recurrence using
electronic health records (EHR) data. Despite promising results, our current pilot predictive models are limited
to a single health system and may have inadequate generalizability due to implicit bias.
This proposal seeks to expand and improve predictive models through the creative use of vetted EHR data
for ischemic stroke patients from three large and different health systems (Penn State Health, Geisinger, and
Johns Hopkins), caring for more than eight million people in rural and urban areas. This project will further explore
the predictive value of social determinants of health (SDoH) when added to the clinical data. The investigators
propose an integrative approach to design parameter-optimized and interpretable models, leveraging enriched
EHR to identify the risk of ischemic stroke recurrence and all-cause mortality. Aim 1: Standardize EHR-based
data across health care centers to identify clusters of ischemic stroke patients with common traits. Aim
2: Develop optimal interpretable ensemble models to predict 1-year mortality and recurrence after an ischemic
stroke. Aim 3: Validate, prospectively and externally, ensemble models for 1-year mortality and stroke
recurrence.
This proposal includes model development with internal, external, and temporal validation and lays the
foundation for an impact study to provide evidence of clinical utility. The investigators envision that this study will
lead to EHR-based screening tools that can flag high-risk stroke patients for more targeted secondary prevention.
使用机器学习预测缺血性中风后 1 年死亡率和复发率
丰富的 EHR 数据
项目概要/摘要
中风是全世界死亡和残疾的主要原因。据估计,1年的风险
中风后死亡和复发率分别约为 15% 和 10%。此外,最近的一份报告显示
全球疾病负担(GBD)显示每年中风和中风的人数大幅增加
继发性死亡,尤其是低收入群体。复发性中风有增加的趋势,发病率较高
死亡率和残疾率。因此,必须识别有复发和死亡风险的患者,以采取适当的措施
及时评估、配置资源、针对性预防。研究人员最近发表的评论
表明 ─ 为预测中风复发而开发的多种临床评分仅具有有限的临床意义
公用事业。同样,当前的中风预后模型在质量上也存在很大差异。中风后死亡率的预测模型
受到验证队列规模、临床变量的广度和整体有用性的限制。调查人员
最近开发了基于机器学习的中风后全因死亡率和复发模型
电子健康记录 (EHR) 数据。尽管结果令人鼓舞,但我们当前的试点预测模型仍然有限
仅限于单一卫生系统,并且由于隐性偏见,可能没有足够的普遍性。
该提案旨在通过创造性地使用经过审查的 EHR 数据来扩展和改进预测模型
来自三个大型不同卫生系统(宾夕法尼亚州立大学卫生系统、Geisinger 和
约翰·霍普金斯大学),为农村和城市地区超过 800 万人提供护理。本项目将进一步探索
添加到临床数据后的健康社会决定因素 (SDoH) 的预测价值。调查人员
提出一种综合方法来设计参数优化和可解释的模型,利用丰富的
EHR 用于确定缺血性中风复发和全因死亡率的风险。目标 1:标准化基于 EHR 的
跨医疗保健中心的数据来识别具有共同特征的缺血性中风患者群。目的
2:开发最佳可解释的整体模型来预测缺血后 1 年死亡率和复发
中风。目标 3:前瞻性和外部验证 1 年死亡率和中风的整体模型
复发。
该提案包括具有内部、外部和时间验证的模型开发,并奠定了
影响研究的基础,以提供临床实用性的证据。研究人员预计这项研究将
基于 EHR 的筛查工具可以标记高风险中风患者,以进行更有针对性的二级预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vida Abedi其他文献
Vida Abedi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




