Characterizing phenotype-associated subpopulations from single-cell sequencing data
从单细胞测序数据表征表型相关的亚群
基本信息
- 批准号:10658611
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAutomobile DrivingBiologicalBiological ProcessBiotechnologyCell CountCell TherapyCellsCellular AssayClinicalClinical ResearchComplexDataData AnalysesData SetDetectionDevelopmentDiseaseDisease ProgressionGenesGenetic TranscriptionGraphIndividualLearningLinkMeasurementMethodologyMethodsModelingMolecularMutationNail plateNatureNeoplasm MetastasisPerformancePharmacotherapyPhenotypePopulationPopulation HeterogeneityPrognostic MarkerRationalizationSample SizeSamplingSeriesSignal TransductionSpeedThe Cancer Genome AtlasTimeTissue SampleTissuesWatercell typecellular targetingclinical phenotypeclinically significantdesignfeature selectionflexibilityhuman diseaseimprovedinnovationlearning strategyloss of functionmachine learning methodnovelnovel strategiespublic health relevancesimulationsingle cell analysissingle cell sequencingsingle cell technologysingle-cell RNA sequencingsupervised learningsurvival outcometheoriestherapy resistanttooltranscriptome sequencingtreatment response
项目摘要
Project Summary
Single-cell sequencing (scSeq) allows us to achieve new discoveries by distinguishing cell types, states, and
lineages from heterogeneous tissue microenvironments. However, it remains challenging to interpret complex
single-cell data from highly heterogeneous populations of cells. Currently, most existing single-cell data analyses
focus on cell type clusters defined by unsupervised clustering methods that cannot directly link cell clusters with
specific biological and clinical phenotypes. Additionally, the ever-increasing capability of scSeq in profiling
thousands to millions of cells brings more challenges of pinpointing which cell cluster for further analysis. Given
so many cells, the rationale of our "phenotype-centric" analysis is based on a Buddhist theory that "Each
individual can only drink one bottle of water from the entire river." Therefore, focusing on specific cell
subpopulations related to essential phenotypes is more important than evenly analyzing all cell clusters.
Furthermore, clinical phenotype information, such as treatment resistance, survival outcomes, cancer metastasis,
and disease stages, is primarily collected on bulk tissue samples. As a result, there is an unmet need to leverage
widely available clinical phenotype information to aid subpopulation identification from single-cell data.
Meanwhile, single-cell samples generated under different conditions require tools to identify the phenotype-
enriched subpopulations for each condition. Taken together, there is a great need for further methodological
progress for "phenotype-centric" scSeq data analysis. To this end, we propose to develop a suite of supervised-
learning-based novel methods to accurately identify the most highly phenotype-associated cell subpopulations
from scSeq data. We will (1) develop a platform with broad utilities for bulk phenotype-guided subpopulation
identification from scSeq; (2) build a novel strategy to learn high-confidence phenotype-enriched subpopulations
from scSeq data; (3) and establish a new platform for supervised phenotypic trajectory learning of subpopulations
from scSeq data. The proposed methods will be evaluated by rigorous simulations and real data analyses. This
proposal is conceptually innovative in the following aspects: (1) Our bulk phenotype-guided scSeq analysis
enables hypothesis-free identification of clinically and biologically relevant cell subpopulations from scSeq data;
(2) Our supervised learning frameworks can simultaneously select genes and identify phenotype-associated
subpopulations from scSeq data; (3) Our method to learn cell subpopulations associated with continuous
phenotypes has a unique feature to recover the hidden phenotypic stages. In summary, we expect this proposal
to deliver a suite of novel machine learning methods for "phenotype-centric" single-cell data analysis, thus
allowing us to precisely pinpoint disease-relevant subpopulations from single-cell data for cellular target
discovery.
项目摘要
单细胞测序(scSeq)使我们能够通过区分细胞类型,状态和细胞周期来实现新的发现。
来自异质组织微环境的谱系。然而,解释复杂的
来自高度异质细胞群体的单细胞数据。目前,大多数现有的单细胞数据分析
重点关注由无监督聚类方法定义的细胞类型聚类,这些方法不能直接将细胞聚类与
特定的生物学和临床表型。此外,scSeq在分析方面不断增强的能力
数千到数百万个细胞带来了更多的挑战,即精确定位哪个细胞簇用于进一步分析。给定
如此多的细胞,我们的“以表型为中心”的分析的基本原理是基于佛教理论,即“每一个
一个人只能喝一瓶整条河的水。“因此,
与基本表型相关的亚群比均匀地分析所有细胞簇更重要。
此外,临床表型信息,如治疗抗性、存活结果、癌症转移、
和疾病阶段,主要收集大量组织样品。因此,需要利用
广泛可用的临床表型信息,以帮助从单细胞数据中鉴定亚群。
同时,在不同条件下产生的单细胞样本需要工具来识别表型-
为每种情况富集亚群。总的来说,非常需要进一步的方法,
“以表型为中心”的scSeq数据分析的进展。为此,我们建议制定一套监督-
基于学习的新方法,以准确识别最高度表型相关的细胞亚群
scSeq数据我们将(1)开发一个具有广泛实用性的平台,用于批量表型指导亚群
从scSeq鉴定;(2)建立一种新策略来学习高置信度表型富集的亚群
从scSeq数据;(3)建立一个新的平台,用于亚群的监督表型轨迹学习
scSeq数据所提出的方法将通过严格的模拟和真实的数据分析进行评估。这
该方案在以下几个方面具有创新性:(1)我们的批量表型指导的scSeq分析
能够从scSeq数据中无假设地鉴定临床和生物学相关的细胞亚群;
(2)我们的监督学习框架可以同时选择基因和识别表型相关的
(3)我们的方法来学习与连续的细胞亚群相关的细胞亚群,
表型具有恢复隐藏的表型阶段的独特特征。总而言之,我们希望这项提案
为“以表型为中心”的单细胞数据分析提供一套新颖的机器学习方法,
使我们能够从单细胞数据中精确地确定疾病相关的亚群,
的发现
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Xia其他文献
Zheng Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng Xia', 18)}}的其他基金
In Silico Screening of Alternative Polyadenylation Regulators in Cancers
癌症中替代多聚腺苷酸化调节剂的计算机筛选
- 批准号:
9924645 - 财政年份:2018
- 资助金额:
$ 30.8万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)