Role Of Retinoid Oxidoreductase Complex In Controlling The Embryonic Development

类维生素A氧化还原酶复合物在控制胚胎发育中的作用

基本信息

  • 批准号:
    10658252
  • 负责人:
  • 金额:
    $ 31.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT All-trans-retinoic acid (RA) is the main physiologically active derivative of vitamin A, which serves as a ligand for nuclear transcription factors, RA receptors. During development, RA is produced in a quickly changing spatiotemporal pattern to control the expression of precise sets of genes at different developmental stages. Critical RA-sensitive processes during development are RA-concentration dependent, which underscores the importance of the precise control over RA synthesis in a strictly defined and rapidly regulated manner. Biosynthesis of RA includes reversible rate-limiting oxidation of retinol to all-trans-retinaldehyde, followed by irreversible oxidation of all-trans-retinaldehyde to RA. Multiple studies examined the roles of the enzymes catalyzing the oxidation of retinaldehyde and degradation of RA in establishing the dynamic pattern of RA concentration. However, the mechanism regulating the upstream rate-limiting step, which supplies the immediate RA precursor, retinaldehyde, in a precise spatiotemporal pattern remains unknown. It has been established that two proteins, retinol dehydrogenase 10 (RDH10) and short-chain dehydrogenase/reductase 3 (DHRS3), are critical for the control of retinaldehyde levels during development. We have recently discovered that DHRS3 binds to RDH10 and upon binding reduces the output of retinaldehyde by RDH10 by recycling retinaldehyde back to retinol. As a result, the formation of the bifunctional retinoid oxidoreductase complex (ROC) that consists of an oxidative RDH10 and reductive DHRS3 attenuates the RA biosynthesis. Whether this mechanism works in vivo and whether ROC exists in animal tissues is unknown, but if proven to be true, this finding will have a paradigm-shifting effect on our understanding of the mechanisms that regulate embryogenesis through vitamin A. The major hypothesis driving this proposal is that ROC represents a previously unrecognized universally conserved mechanism that can both provide the RA synthesis with robustness (Aim 1) and enable the dynamic changes in RA spatiotemporal pattern by regulating the levels of RA precursor (Aim 2). The hypothesis will be tested using a zebrafish embryogenesis model to take advantage of external fertilization and transparency of zebrafish for intra-vital visualization of RA synthesis and formation of the complex. Successful completion of these studies will advance the field at the conceptual level by demonstrating a mechanistically novel model of producing strictly controlled spatiotemporal gradients of small molecules. These findings will lay the foundation for a better understanding of the mechanisms of congenital diseases associated with dysregulation of RA homeostasis.
摘要 全反式维甲酸(All-trans-retinoic acid,RA)是维生素A的主要生理活性衍生物,作为维生素A的配体 核转录因子RA受体在发育过程中,RA以快速变化的 时空模式来控制不同发育阶段基因的精确表达。 发育过程中的关键RA敏感过程是RA浓度依赖性的,这强调了 以严格定义和快速调节的方式精确控制RA合成的重要性。 RA的生物合成包括视黄醇可逆的限速氧化为全反式视黄醇醛,然后是 全反式-视黄醇不可逆氧化为RA。多项研究检查了酶的作用 在建立类风湿性关节炎动力学模型中,催化视黄醇氧化和类风湿性关节炎降解 浓度.然而,调节上游速率限制步骤的机制,其提供即时的 RA前体,视黄醇,在一个精确的时空模式仍然未知。已经确定 两种蛋白质,视黄醇脱氢酶10(RDH 10)和短链脱氢酶/还原酶3(DHRS 3), 在发育过程中对控制视黄醇水平至关重要。我们最近发现,DHRS 3 与RDH 10结合,结合后通过回收视黄醇减少RDH 10对视黄醇的输出 回到视黄醇。因此,双功能类维生素A氧化还原酶复合物(ROC)的形成, 氧化型RDH 10和还原型DHRS 3的结合减弱了RA的生物合成。不管这个机制是否有效 体内以及动物组织中是否存在ROC尚不清楚,但如果被证明是真的,这一发现将具有 范式转变对我们理解通过维生素C调节胚胎发生的机制的影响 A.推动这一提议的主要假设是,ROC代表了一个以前未被承认的普遍性。 保守的机制,既可以提供RA合成与鲁棒性(目标1),并使动态 通过调节RA前体水平改变RA时空模式(目的2)。假设是 使用斑马鱼胚胎发生模型进行测试,以利用外部受精和透明的 斑马鱼用于RA合成和复合物形成的活体内可视化。 这些研究的成功完成将通过展示一个 这是一种产生严格控制的小分子时空梯度的机械新颖模型。这些 研究结果将为更好地了解与先天性疾病相关的机制奠定基础。 类风湿关节炎稳态失调

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga V Beliaeva其他文献

Olga V Beliaeva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SYNTHESIS AND BIOLOGICAL ACTIVITY OF A NEW ALL-TRANS-RETINOL METABOLITES
一种新的全反式视黄醇代谢物的合成和生物活性
  • 批准号:
    8361148
  • 财政年份:
    2011
  • 资助金额:
    $ 31.19万
  • 项目类别:
SYNTHESIS AND BIOLOGICAL ACTIVITY OF A NEW ALL-TRANS-RETINOL METABOLITES
一种新的全反式视黄醇代谢物的合成和生物活性
  • 批准号:
    8168931
  • 财政年份:
    2010
  • 资助金额:
    $ 31.19万
  • 项目类别:
SYNTHESIS AND BIOLOGICAL ACTIVITY OF A NEW ALL-TRANS-RETINOL METABOLITES
一种新的全反式视黄醇代谢物的合成和生物活性
  • 批准号:
    7954594
  • 财政年份:
    2009
  • 资助金额:
    $ 31.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了