Neural Mechanisms for Flexible Vocal Communication

灵活语音交流的神经机制

基本信息

  • 批准号:
    10658308
  • 负责人:
  • 金额:
    $ 211.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-03 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary: Whether to laugh at a joke or to engage in a lively debate, we flexibly modify our vocalizations based upon social contexts. Such adaptive behavior requires real-time adjustments of motor outputs in response to rapidly changing sensory inputs. How does the brain accomplish this sensorimotor feat? Pioneering studies have characterized the brain areas responsible for sound production in many species (e.g., drosophila, zebra finches, marmosets, mice), but the neural circuits that generate vocal flexibility remain poorly understood. Vocal flexibility, such as during a conversation, requires voluntary, context-dependent control over sound production. In mammals, based on human brain lesions, gene expression profiles, and neurophysiology data in primates, cortical control has been proposed to exert volitional control over sound production. However, direct evidence for this idea is scarce and the neural circuit-level mechanisms underlying vocal flexibility, especially in mammals, remain largely unknown. Finding an appropriate rodent model would complement prior work in the primates and would permit circuit-level mechanisms to be deciphered. Alston’s singing mice (S. teguina), a highly vocal rodent from the cloud forests of Central America, are ideally suited to study flexible vocal behaviors. Singing mice show remarkable vocal flexibility, switching between variable, ultrasonic vocalizations (USVs) and stereotyped, human-audible songs depending upon social context. In contrast, most rodents including lab mice (M. musculus) produce only USVs and are not known to participate in vocal interactions. Singing mice and lab mice are roughly the same body size, and brain slices of S. teguina at a first glimpse is indistinguishable from those of M. musculus. Neural circuit differences underlying such drastic behavioral divergence are unknown. Here we propose to test whether the ability of the singing mice to apply vocalizations flexibly within a social context, and lack thereof in most other rodent species, is dependent upon motor cortical function, acting via downstream vocal production circuits. Using chronic electrophysiology (Aim 1), single-cell comparative connectomics (Aim 2), we will determine the role of motor cortex during natural vocal behaviors and compare cortical connectivity and function between two species. In Aim 3, we will manipulate the circuit to determine their causal role in various vocal behaviors in each species. By mapping, measuring and manipulating cortical circuits, we will learn how motor cortex modulates behavioral flexibility in service of social communication. More broadly, these experiments will provide a systems-level framework to study hierarchical motor control circuits – for e.g., how high-level (cortical) control can inform low-level controllers (subcortical pattern-generators) to generate appropriate motor commands – a challenge faced by biological and artificial agents moving through the world.
项目概要: 无论是对一个笑话发笑还是参与一场生动的辩论,我们都会根据自己的声音来灵活地调整发音。 在社会背景下。这种自适应行为需要实时调整运动输出, 对快速变化的感官输入的反应。大脑是如何完成这种感觉运动的壮举的呢? 开创性的研究已经确定了许多人负责声音产生的大脑区域的特征。 物种(例如,果蝇,斑胸草雀,绒猴,老鼠),但是产生声音的神经回路 人们对灵活性仍然知之甚少。声音的灵活性,例如在谈话中,需要自愿, 对声音产生的上下文相关控制。在哺乳动物中,基于人类大脑病变,基因 表达谱和灵长类动物的神经生理学数据,已经提出皮质控制发挥作用, 对声音产生的意志控制然而,这一想法的直接证据是稀缺的,神经 尤其是在哺乳动物中,发声灵活性背后的回路水平机制在很大程度上仍然未知。 找到一个合适的啮齿动物模型将补充先前在灵长类动物中的工作, 电路级机制被破译。阿尔斯顿的歌唱老鼠(S。teguina),一种声音很大的啮齿动物 来自中美洲的云雾森林,非常适合研究灵活的声音行为。唱歌 小鼠表现出显著的发声灵活性,在变量之间切换,超声波发声(USV) 以及根据社会背景而定的、人类听得见的歌曲。相比之下,大多数啮齿动物 包括实验室小鼠(M. musculus)仅产生USV,并且不知道参与发声 交互.唱歌的老鼠和实验室老鼠的体型大致相同,而S。特吉纳 第一眼看到的是与M.肌肉神经回路差异 这种剧烈行为差异是未知的。在这里,我们建议测试的能力, 唱歌的老鼠在社会环境中灵活地应用发声,而大多数其他啮齿动物缺乏这种能力。 物种,是依赖于运动皮质功能,通过下游发声电路。 使用慢性电生理学(目标1),单细胞比较连接组学(目标2),我们将 确定运动皮层在自然发声行为中的作用, 两个物种之间的关系在目标3中,我们将操纵电路以确定其因果关系 在每个物种的各种发声行为中的作用。通过绘制、测量和操纵大脑皮层 电路,我们将学习如何运动皮层调节行为的灵活性,为社会服务, 通信更广泛地说,这些实验将提供一个系统级的框架来研究 分级电动机控制电路-例如,高水平(皮层)控制如何告知低水平 控制器(皮层下模式发生器),以产生适当的电机命令-一个挑战 面临着生物和人造物质在世界上的移动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARKARUP BANERJEE其他文献

ARKARUP BANERJEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 211.91万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 211.91万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了