Characterization of mammalian COG complex-interacting Golgi trafficking machinery
哺乳动物 COG 复杂相互作用的高尔基体运输机制的表征
基本信息
- 批准号:10658337
- 负责人:
- 金额:$ 40.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinity ChromatographyAlzheimer&aposs DiseaseBindingBiochemicalBiotinylationCategoriesCell LineCell MaintenanceCell modelCell physiologyCellsCongenital disorders of glycosylationConserved SequenceCystic FibrosisDefectDevelopmentDiabetes MellitusDiseaseDockingEnvironmentEnzymesFibroblastsFluorescence MicroscopyGolgi ApparatusHermanski-Pudlak SyndromeHumanImpairmentIn VitroIntracellular MembranesKineticsLabelLegLipidsLiverMalignant NeoplasmsMedialMediatingMembraneMembrane FusionMicrocephalyMicroscopicMicroscopyModelingMolecularMutationNatureNeurologicNeuronsOccupationsPathway interactionsPatientsPhenotypePhysiologicalPopulationPost-Translational Protein ProcessingProcessProtein SecretionProtein SortingsProteinsProteomicsRecyclingRegulationSNAP receptorSet proteinSignal TransductionSymptomsSystemTestingTissuesTreatment ProtocolsVesicleautosomebaseboneflexibilityglycosylationgolginhuman diseasein vivoinduced pluripotent stem cellnovelpolarized cellprotein protein interactionreceptorskeletalstem cellssuccesstherapy developmenttissue/cell culturetraffickingultra high resolutionvesicle transport
项目摘要
PROJECT SUMMARY/ABSTRACT
Intracellular membrane trafficking mediates the intracellular delivery of proteins and lipids. The process is bidirectional
and consists of the anterograde (secretory) and retrograde (endocytic) branches. Intracellular membrane trafficking is
evolutionary conserved, and its machinery is modular, with functionally homologous components operating on different
trafficking steps. Therefore, a detailed understanding of one trafficking step will help in understanding the entire
intracellular membrane trafficking process.
The Conserved Oligomeric Golgi (COG) complex operates as a vesicular tether for intra-Golgi trafficking. The Golgi is
the central hub for protein posttranslational modifications, mostly glycosylation. Consequently, the primary job of the
COG is to tether vesicles that recycle resident enzymes and cargo receptors. To achieve its function, the COG interacts
with SNAREs, Rabs, and other tethers, but the detailed understanding of these interactions is an enigma that we propose
to solve by pairwise probing of COG/partner interactions, their kinetics, and by defining their molecular environment
through proximity-labeling studies. Depletion of COG causes accumulation of specific transport intermediates – COG
complex dependent (CCD) vesicles that are likely to represent a major class of Golgi vesicles that recycle Golgi enzymes
and cargo receptors.
Mutations in COG subunits result in congenital disorders of glycosylation (CDG) type II category, which belong to a
group of autosomal recessive multi-systemic disorders with several distinguishable symptoms that include global
developmental defects and microcephaly. These deficits are often accompanied by neurological and liver impairment.
COG-CDG defects are studied in patients’ fibroblasts, which do not represent the most affected tissues; a more flexible
cell base model will benefit our progress in developing a cure for this disorder.
We hypothesize that a revealing of the molecular basis of COG/partner interactions will help in deciphering the
mechanisms of assembly/disassembly of vesicle docking platforms and that a detailed analysis of different populations of
CCD vesicles will uncover their specific origin, budding and tethering machinery and a complete set of proteins that
traffic in a COG-dependent manner. The development of cell-based models for COG-CDGs will allow us to test the
effects of different COG mutations without the need for patient involvement and pave the way for the development of
treatment protocols. To test this hypothesis, first, we will characterize in molecular interactions between COG and its key
partner proteins (Aim1). Next, we will use a degrone-assisted COG depletion to accumulate, purify and characterize CCD
vesicles (Aim2). Finally, we will develop and characterize a novel iPSC-based cellular model for COG CDGs (Aim 3).
Success in accomplishing these aims will provide a mechanistic understanding of COG complex function, characterize
COG-dependent trafficking intermediates, and create a set of isogenic stem cell lines bearing human COG mutations.
Moreover, these results will be necessary for a functional understanding of Golgi dynamic and vesicular trafficking in
general.
项目摘要/摘要
细胞内膜运输介导蛋白质和脂质的细胞内递送。这个过程是双向的
并且由顺行(分泌)和逆行(内吞)分支组成。细胞内膜运输是
进化保守,其机制是模块化的,功能同源的组件在不同的环境中运作。
贩运步骤。因此,详细了解贩运的一个步骤将有助于了解整个
细胞内膜运输过程。
保守寡聚高尔基体(COG)复合体作为高尔基体内运输的囊泡系链。高尔基体是
蛋白质翻译后修饰的中心枢纽,主要是糖基化。因此,
COG是用来拴系回收驻留酶和货物受体的囊泡。为了实现其功能,COG与
与SNARE,Rabs和其他系绳,但这些相互作用的详细理解是一个谜,我们建议
通过成对探测COG/伴侣相互作用及其动力学并定义其分子环境来解决
通过邻近标记研究。COG的消耗导致特定转运中间体- COG的积累
复合物依赖性(CCD)囊泡,其可能代表回收高尔基体酶的主要类别的高尔基体囊泡
和货物受体。
COG亚基中的突变导致先天性糖基化障碍(CDG)II型,其属于先天性糖基化障碍。
一组常染色体隐性多系统性疾病,具有几种可区分的症状,包括全身性
发育缺陷和小头畸形。这些缺陷通常伴有神经和肝脏损伤。
在患者的成纤维细胞中研究了COG-CDG缺陷,这些成纤维细胞并不代表受影响最严重的组织;更灵活的
基于细胞的模型将有利于我们在开发这种疾病的治疗方法方面取得进展。
我们假设,揭示COG/伴侣相互作用的分子基础将有助于破译
组装/拆卸机制的囊泡对接平台,并详细分析了不同群体的
CCD囊泡将揭示其特定的起源,出芽和束缚机制以及一整套蛋白质,
以依赖于COG的方式进行通信。基于细胞的COG-CDG模型的开发将使我们能够测试
不同COG突变的影响,而不需要患者参与,并为发展铺平道路,
治疗方案。为了验证这一假设,首先,我们将描述COG及其关键分子之间的相互作用。
伴侣蛋白(Aim 1)。接下来,我们将使用一个degrone辅助COG耗尽积累,纯化和表征CCD
囊泡(Aim 2)。最后,我们将开发和表征一种新的基于iPSC的COG CDG细胞模型(目标3)。
成功地实现这些目标将提供一个机械的理解COG复杂的功能,
COG依赖性运输中间体,并创建一组携带人COG突变的等基因干细胞系。
此外,这些结果将是必要的高尔基体动态和囊泡运输的功能性理解,
将军
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VLADIMIR V LUPASHIN其他文献
VLADIMIR V LUPASHIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VLADIMIR V LUPASHIN', 18)}}的其他基金
Characterization of mammalian COG complex-interacting Golgi trafficking machinery
哺乳动物 COG 复杂相互作用的高尔基体运输机制的表征
- 批准号:
9920712 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting intra-Golgi trafficking mac
哺乳动物 COG 复合体相互作用的高尔基体内运输机制的表征
- 批准号:
7659601 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting Golgi trafficking machinery
哺乳动物 COG 复杂相互作用的高尔基体运输机制的表征
- 批准号:
9751315 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting Golgi trafficking machinery
哺乳动物 COG 复杂相互作用的高尔基体运输机制的表征
- 批准号:
8626672 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting intra-Golgi trafficking mac
哺乳动物 COG 复合体相互作用的高尔基体内运输机制的表征
- 批准号:
7524537 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting intra-Golgi trafficking mac
哺乳动物 COG 复合体相互作用的高尔基体内运输机制的表征
- 批准号:
8272541 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting Golgi trafficking machinery
哺乳动物 COG 复杂相互作用的高尔基体运输机制的表征
- 批准号:
9768870 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting Golgi trafficking machinery
哺乳动物 COG 复杂相互作用的高尔基体运输机制的表征
- 批准号:
8788040 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting intra-Golgi trafficking mac
哺乳动物 COG 复合体相互作用的高尔基体内运输机制的表征
- 批准号:
8075042 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
Characterization of mammalian COG complex-interacting intra-Golgi trafficking mac
哺乳动物 COG 复合体相互作用的高尔基体内运输机制的表征
- 批准号:
8320622 - 财政年份:2008
- 资助金额:
$ 40.95万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 40.95万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 40.95万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 40.95万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 40.95万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 40.95万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 40.95万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 40.95万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 40.95万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 40.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 40.95万 - 项目类别:
Collaborative Research and Development Grants