Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
基本信息
- 批准号:10676686
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAntioxidantsAreaAstrocytesAutophagocytosisAutophagosomeBindingCellsCellular StressClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCytoplasmDataDefectDegradation PathwayDiseaseGenesGoalsImpairmentInvestigationKnowledgeLinkLysosomesMeasuresMetabolic stressMutationNerve DegenerationNeurodegenerative DisordersNeuronsOxidative StressOxidative Stress InductionPathologyPathway interactionsProteinsProteomeRegulationResolutionRoleSerineSmall Interfering RNASpecific qualifier valueStressStructureSystemTestingUbiquitinUbiquitinationWestern Blottingbafilomycin A1biological adaptation to stresscell typecombatdesignfallsin vivoinhibitorinsightknock-downmutantneuroprotectionprotein aggregationproteotoxicityreceptorresponsesuperoxide dismutase 1targeted treatmenttherapeutic developmenttranscription factor
项目摘要
Project Summary. Neurons and astrocytes have unique demands in regulating the quality of their proteome. A
key regulator of the proteome is autophagy, a lysosomal degradation pathway. During autophagy, cytoplasmic
components are packaged into autophagosomes and delivered to lysosomes for cargo degradation.
Autophagy is neuroprotective, as mutations in key autophagy genes cause neurodegeneration. Preliminary
studies show that autophagy is regulated differently in neurons and astrocytes in multiple paradigms of stress.
Despite the importance of autophagy, how it is regulated in neurons and astrocytes to facilitate cell-
type specific functions and stress responses is largely unknown. Thus, the goal for this proposal is to
define cell-type specific functions for the autophagy receptor p62 in neurons and astrocytes. P62 facilitates
selective forms of autophagy by binding to ubiquitinated substrates and the autophagy marker LC3, thereby
incorporating cargo into a forming autophagosome. P62 mitigates proteotoxic stress by targeting protein
aggregates to the autophagy pathway. Additionally, p62 mitigates oxidative stress by targeting Keap1, a
negative regulator of the antioxidant transcription factor NRF2, for degradation by autophagy. To examine
functions of p62 in each cell type, we established a robust system to coculture neuron and astrocytes. This
system recapitulates intercellular interactions found in vivo, and provides an easily manipulatable system for
studying cell-type specific p62 function with high resolution. Using the coculture, I found by immunostain that
metabolic stress (autophagy activator) induces formation of p62-ubiquitin positive structures (i.e., ubiquitinated
cargo) only in neurons. Moreover, blocking ubiquitination significantly reduces p62 puncta formation and
degradation in neurons as compared to astrocytes in basal and stress conditions. Astrocytes are crucial to
combating oxidative stress, but the role of p62 in this pathway in astrocytes is largely unknown. I found that
oxidative stress induces p62 levels selectively in astrocytes. Thus, I hypothesize that p62 functions
primarily in selective autophagy in neurons, and primarily in the antioxidant pathway in astrocytes.
Importantly, ALS-linked mutations in p62 fall in domains important for each function. But how p62 protects
against neurodegeneration in each cell type is not understood. I hypothesize that ALS-linked mutations in
p62 domains that are important for selective autophagy and antioxidant function will impair p62
function in neurons and astrocytes, respectively. To test these hypotheses, I will (Aim 1) define cell-type
specific functions of p62 in neurons and astrocytes, and (Aim 2) determine the effects of ALS-linked mutations
on p62 function in neurons and astrocytes. This study will elucidate cell-type specific contributions of neurons
and astrocytes to neurodegeneration. In turn, understanding cell-type specific contributions to ALS will enable
opportunities for more targeted and specified therapies to mitigate neurodegeneration.
项目摘要。神经元和星形胶质细胞在调节其蛋白质组的质量方面具有独特的需求。一
蛋白质组的关键调节因子是自噬,一种溶酶体降解途径。在自噬过程中,
将这些组分包装到自噬体中并递送到溶酶体用于货物降解。
自噬具有神经保护作用,因为关键自噬基因的突变会导致神经退行性变。初步
研究表明,在多种应激模式中,神经元和星形胶质细胞中的自噬受到不同的调节。
尽管自噬的重要性,它是如何在神经元和星形胶质细胞中调节,以促进细胞-
类型特异性功能和应激反应在很大程度上是未知的。因此,本提案的目标是
定义神经元和星形胶质细胞中自噬受体p62的细胞类型特异性功能。P62有助于
通过结合泛素化底物和自噬标记物LC 3的选择性自噬形式,从而
将货物并入形成的自噬体中。P62通过靶向蛋白减轻蛋白毒性应激
自噬途径的聚集体。此外,p62通过靶向Keap 1减轻氧化应激,
抗氧化转录因子NRF 2的负调节因子,用于通过自噬降解。审查
p62在每种细胞类型中的功能,我们建立了一个强大的系统来共培养神经元和星形胶质细胞。这
系统概括了体内发现的细胞间相互作用,并提供了一种易于操作的系统,
高分辨率研究细胞类型特异性p62功能。通过免疫染色,我发现,
代谢应激(自噬激活剂)诱导p62-遍在蛋白阳性结构的形成(即,泛素化
货物)仅在神经元中。此外,阻断泛素化可显著减少p62斑点的形成,
与基础和应激条件下的星形胶质细胞相比,神经元中的降解。星形胶质细胞对于
抗氧化应激,但在星形胶质细胞中p62在这一途径中的作用在很大程度上是未知的。我发现
氧化应激选择性诱导星形胶质细胞中的p62水平。因此,我假设p62功能
主要在神经元中的选择性自噬中,以及主要在星形胶质细胞中的抗氧化剂途径中。
重要的是,ALS连锁突变p62落在域重要的每一个功能。P62如何保护
对每种细胞类型的神经变性的影响尚不清楚。我假设ALS相关突变
对于选择性自噬和抗氧化功能重要的p62结构域将损害p62
分别在神经元和星形胶质细胞中发挥作用。为了验证这些假设,我将(目标1)定义细胞类型
p62在神经元和星形胶质细胞中的特异性功能,并(目的2)确定ALS连锁突变的影响
p62在神经元和星形胶质细胞中的功能。这项研究将阐明神经元的细胞类型特异性贡献
和星形胶质细胞转化为神经变性。反过来,了解细胞类型对ALS的特异性贡献将使
更多的针对性和特定的治疗,以减轻神经退行性变的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID Kader SIDIBE其他文献
DAVID Kader SIDIBE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)