YTHDF3 as a critical regulator of cardiac function
YTHDF3 作为心脏功能的关键调节因子
基本信息
- 批准号:10676427
- 负责人:
- 金额:$ 4.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenosineAdoptedAdultAffectBindingBinding ProteinsBiologyCardiacCardiac MyocytesCause of DeathCell NucleusChemicalsCo-ImmunoprecipitationsDataDevelopmentDilated CardiomyopathyDiseaseDrug DesignEchocardiographyEnhancersEnzymesEukaryotaEventFamilyFunctional disorderFutureGene ExpressionGene Expression RegulationGenetic TranscriptionGrowthHealthHeartHeart DiseasesHeart HypertrophyHeart InjuriesHeart failureHistologicHomeostasisHypertrophyImmunoprecipitationInjuryKnock-outKnockout MiceKnowledgeMass Spectrum AnalysisMediatingMessenger RNAMethylationModelingModificationMolecularMorbidity - disease rateMusMuscle CellsMyocardialNamesNuclearPathologicPathologyPatientsPhenotypePhysiologicalPositioning AttributePropertyProteinsProteomeRNARNA BindingRNA methylationRNA-Binding ProteinsReaderRegulationResearchResearch PersonnelRoleStressTestingTherapeuticTimeTranscriptTranslationsWorkWorkloadaorta constrictionbiological adaptation to stresscoping mechanismcrosslinkepitranscriptomeexperimental studyheart functionimprovedimproved outcomeinnovationmembermortalitymouse modelnovelnovel therapeuticsposttranscriptionalpressureprotein protein interactionresponsetranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY
As the global leading cause of death, heart failure is a major challenge for researchers in their quest to discover
therapeutics that can save countless lives. After cardiac injury, the heart begins to remodel itself in a way that is
initially adaptive, but this innate coping mechanism may over time expedite heart failure onset. Elucidating the
mechanisms which underly the progression from adaptive cardiac hypertrophic remodeling to heart failure will
dramatically impact the discovery of novel therapeutics for this deadly disease. While regulation of gene
expression through transcription of messenger RNA (mRNA) has been extensively studied, only recently an
appreciation for the importance of chemical modifications that can occur on mRNA has emerged. This proposal
focuses on the methylation of the N6-Adenosine of mRNA (m6A), which is the most abundant internal mRNA
modification in eukaryotes. Previous research from our lab has shown that modulation of m6A content in the
heart is sufficient to drive cardiac remodeling and to affect the ability of the heart to respond to stress. Despite
this, the exact mechanisms through which this occurs is not well understood. The fate of m6A-modified mRNAs
is regulated by members of the YTH Domain Family (YTHDF). We found that YTHDF3 is specifically important
in cardiomyocytes, where it localizes to the nucleus and binds to Myocyte Enhancer Factor 2D (MEF2D), which
is an important transcription factor regulating hypertrophic cardiac growth. Further, we have found that knockout
of YTHDF3 mitigates pathological remodeling following pressure overload injury. Given these preliminary data,
we hypothesize that YTHDF3 regulates cardiomyocyte size and stress-induced remodeling by modulating
the processing of m6A-modified mRNAs transcribed by MEF2D. To test this hypothesis, we already
generated and validated a new mouse line in which YTHDF3 can be selectively deleted in cardiomyocytes
(YTHDF3-cKO). In Aim 1, we will investigate the role of YTHDF3 at baseline and in the stressed murine heart
using longitudinal echocardiography analysis, and assessing histological and molecular signs of pathology at
the terminal time point. In Aim 2, we will determine the mechanism through which YTHDF3 regulates the fate of
specific subsets of MEF2D-transcribed m6A-mRNAs in cardiomyocytes. First, we will further characterize the
binding between YTHDF3 and MEF2D by defining the respective domains involved. Then, we will dissect the
binding of YTHDF3 to MEF2D mRNA targets and determine consequent stability, export, and translation of these
transcripts. Finally, in Aim 3, we will undertake an unbiased approach to more globally investigate the role of
YTHDF3 in regulating mRNA biology in healthy and stressed adult cardiomyocytes by cross-linking
immunoprecipitations of YTHDF3-bound mRNAs followed by sequencing (CLIP-seq). Our approach is innovative
and significant, as it will be the first project to define the role of YTHDF3 in the heart, which may lead to a new
field of therapeutics based on the biology of mRNA methylation.
项目摘要
作为全球主要的死亡原因,心力衰竭是研究人员寻求发现的主要挑战
可以拯救无数生命的疗法心脏损伤后,心脏开始重塑自己的方式,
最初是适应性的,但随着时间的推移,这种先天的应对机制可能会加速心力衰竭的发作。阐明
从适应性心脏肥厚性重构到心力衰竭的进展机制将
对发现这种致命疾病的新疗法产生了巨大影响。虽然基因调控
通过信使RNA(mRNA)转录的表达已经被广泛研究,直到最近,
已经出现了对可能发生在mRNA上的化学修饰的重要性的认识。这项建议
重点关注mRNA的N6-腺苷(m6 A)的甲基化,其是最丰富的内部mRNA
真核生物中的修饰。我们实验室以前的研究表明,在细胞中调节m6 A含量,
心脏的压力足以驱动心脏重塑并影响心脏对压力的反应能力。尽管
这种情况发生的确切机制尚不清楚。m6 A修饰的mRNA的命运
由YTH结构域家族(YTHDF)成员调控。我们发现YTHDF 3特别重要,
在心肌细胞中,它定位于细胞核并与肌细胞增强因子2D(MEF 2D)结合,
是调节肥大性心脏生长的重要转录因子。此外,我们发现,
YTHDF 3减轻了压力过载损伤后的病理性重塑。根据这些初步数据,
我们推测YTHDF 3通过调节心肌细胞的大小和应激诱导的重构,
由MEF 2D转录的m6 A修饰的mRNA的加工。为了验证这个假设,我们已经
产生并验证了一种新的小鼠品系,其中YTHDF 3可以在心肌细胞中选择性缺失
(YTHDF3-cKO)。在目标1中,我们将研究YTHDF 3在基线和应激小鼠心脏中的作用
使用纵向超声心动图分析,并评估病理的组织学和分子学体征,
终点时间点。在目标2中,我们将确定YTHDF 3调节细胞命运的机制。
心肌细胞中MEF 2D转录的m6 A-mRNA的特定子集。首先,我们将进一步描述
通过定义所涉及的相应结构域来确定YTHDF 3和MEF 2D之间的结合。然后,我们将解剖
YTHDF 3与MEF 2D mRNA靶点的结合,并决定这些靶点的随后稳定性、输出和翻译。
成绩单最后,在目标3中,我们将采取公正的方法,在全球范围内调查
YTHDF 3通过交联调节健康和应激的成年心肌细胞中的mRNA生物学
YTHDF 3结合的mRNA的免疫沉淀,随后测序(CLIP-seq)。我们的方法是创新的
而且意义重大,因为它将是第一个定义YTHDF 3在心脏中作用的项目,这可能会导致一个新的
基于mRNA甲基化生物学的治疗学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles P. Rabolli其他文献
Nanopore Detection of METTL3-Dependent m6A-Modified mRNA Reveals a New Mechanism Regulating Cardiomyocyte Mitochondrial Metabolism.
METTL3 依赖性 m6A 修饰 mRNA 的纳米孔检测揭示了调节心肌细胞线粒体代谢的新机制。
- DOI:
10.1161/circulationaha.123.066473 - 发表时间:
2024 - 期刊:
- 影响因子:37.8
- 作者:
Charles P. Rabolli;Isabel S. Naarmann;C. Makarewich;Kedryn K. Baskin;Christoph Dieterich;Federica Accornero - 通讯作者:
Federica Accornero
Loss of YTHDF2 Alters the Expression of msup6/supA-Modified Myzap and Causes Adverse Cardiac Remodeling
YTHDF2 的缺失改变了 msup6/supA 修饰的 Myzap 的表达并导致不良心脏重塑
- DOI:
10.1016/j.jacbts.2023.03.012 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:7.200
- 作者:
Volha A. Golubeva;Lisa E. Dorn;Christopher J. Gilbert;Charles P. Rabolli;Anindhya Sundar Das;Vishmi S. Wanasinghe;Roland Veress;Dmitry Terentyev;Federica Accornero - 通讯作者:
Federica Accornero
Cardiac cryptographers: cracking the code of the epitranscriptome
心脏密码学家:破解表观转录组的密码
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:39.3
- 作者:
Charles P. Rabolli;Federica Accornero - 通讯作者:
Federica Accornero
AIMP3 maintains cardiac homeostasis by regulating the editing activity of methionyl-tRNA synthetase
AIMP3 通过调节甲硫氨酰-tRNA 合成酶的编辑活性来维持心脏内环境稳定
- DOI:
10.1038/s44161-025-00670-w - 发表时间:
2025-06-25 - 期刊:
- 影响因子:10.800
- 作者:
Anindhya S. Das;Charles P. Rabolli;Colton R. Martens;Han-Kai Jiang;Yingshen Zhang;Aubree A. Zimmer;Kevin Lin;Kedryn K. Baskin;Juan D. Alfonzo;Federica Accornero - 通讯作者:
Federica Accornero
Charles P. Rabolli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




