Metabolic pathways regulate metaplasia and cancer initiation in the pancreas
代谢途径调节胰腺化生和癌症发生
基本信息
- 批准号:10675815
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acinar CellAntioxidantsBiomassBuffersCancer EtiologyCell Culture TechniquesCell SurvivalCell secretionCellsCellular Metabolic ProcessCessation of lifeCitric Acid CycleCoculture TechniquesCommunicationCritical PathwaysCytoprotectionDataDetectionDevelopmentDisease ProgressionDuct (organ) structureEnsureEnvironmentEnzymesEquilibriumFutureG6PD geneGene ExpressionGenesGeneticGenetically Engineered MouseGlucosephosphate DehydrogenaseGlutamineGlutathioneGrowthHomeostasisHumanImmunologic SurveillanceInjuryIsotopesK-ras mouse modelKRAS oncogenesisKRAS2 geneLeadLesionLinkLiteratureMalatesMalignant NeoplasmsMalignant neoplasm of pancreasMetabolicMetabolic PathwayMetabolismMetaplasiaMetaplastic CellMouse StrainsMusMutationNADPNeoplasmsNormal CellOncogenesOncogenicOrganOxidation-ReductionPancreasPancreatic Ductal AdenocarcinomaPancreatic Intraepithelial NeoplasiaPathway interactionsPentosephosphate PathwayPhenotypePilot ProjectsPrecancerous ConditionsProcessProductionProliferatingPyruvateReactive Oxygen SpeciesReduced GlutathioneRepressionResearch ProposalsRoleRouteSourceStressSurvival RateSystemTherapeuticTissuesTranscriptUnited StatesWorkcancer initiationcell typecofactordriver mutationexperimental studyhuman diseasehuman tissuein vivoinnovationinsightmalic enzymemetabolomicsmouse modelmutantnew therapeutic targetnovelnovel diagnosticspancreatic cancer modelpancreatic neoplasmpre-clinicalpremalignantprogramsresponsetranscriptome sequencingtranscriptomicstransdifferentiationtumortumor progressiontumorigenesis
项目摘要
PROJECT SUMMARY
Activating mutations in KRAS reprogram cell metabolism to support growth, proliferation, and
survival in pancreatic cancer. However, there is little information on how KRAS-dependent
alterations in metabolism contribute to premalignant states and cancer initiation. Acinar-to-
ductal metaplasia (ADM) is a precancerous state essential in pancreatic ductal
adenocarcinoma. During ADM, acinar cells transdifferentiate to become more duct-like and
proliferative, usually in response to tissue damage. ADM is reversible but activating mutations in
KRAS lead to persistent ADM and progression to neoplasia and cancer. Recent studies also
show that healthy acinar cells can restrict and eliminate oncogenic KRAS-expressing cells.
Based on preliminary data, I hypothesize that healthy acinar cells alter their metabolism during
ADM to aid in redox homeostasis and restrict the growth of nearby oncogenic cells, thereby
restricting cancer initiation. Preliminary experiments show that Glucose-6-phosphate
dehydrogenase (G6pd) and Malic enzyme 1 (Me1) transcripts are significantly upregulated
during ADM. G6PD is the rate limiting enzyme in the pentose phosphate pathway and ME1
converts malate to pyruvate, linking glycolytic and citric acid cycles. In addition, both G6PD and
ME1 enzymes produce NADPH, which protects against redox stress. Aim 1 will focus on G6pd
and Me1 and determine how redox balance and NADPH production contribute to ADM
formation. Preliminary experiments show that loss of these enzymes increased the level of
reactive oxygen species in acinar cells. The experiments proposed in Aim 1 use genetically
engineered mouse models of pancreatic cancer, steady-state metabolomics, isotope tracing,
and ex vivo primary acinar cell culture to examine the consequence on ADM and tumorigenesis
when G6pd and Me1 are lost, and NADPH pools are reduced. Aim 2 will determine how
metabolic redox interactions between healthy and oncogenic cells restrict ADM. Preliminary
experiments suggest that healthy acinar cells secrete metabolites to inhibit adjacent KRAS-
expressing cells from undergoing ADM. This aim uses inducible mouse models of KRAS-driven
pancreatic cancer, metabolomics, and spatial transcriptomics. The proposed experiments will
help to identify how healthy cells sense the presence of neighboring oncogenic cells and
reprogram their cell state and metabolism to repress cancer initiation. Together, the aims
presented in this proposal will provide new mechanistic insights on how metabolic pathways
drive pancreatic cancer initiation, thereby informing future therapeutics.
项目总结
激活KRAS中的突变重新编程细胞代谢以支持生长、增殖和
胰腺癌患者的存活率。然而,关于KRAS依赖程度的信息很少
新陈代谢的改变有助于癌前状态和癌症的发生。腺泡到-
导管化生(ADM)是胰腺导管的一种癌前状态。
腺癌。在ADM期间,腺泡细胞转分化,变得更像导管和
增殖性的,通常是对组织损伤的反应。ADM是可逆的,但会激活
KRAS导致持续的ADM,并进展为肿瘤和癌症。最近的研究也
表明健康的腺泡细胞可以限制和消除致癌的KRAS表达细胞。
根据初步数据,我假设健康的腺泡细胞在
ADM有助于氧化还原动态平衡,并限制附近致癌细胞的生长,从而
限制癌症的发生。初步实验表明,葡萄糖-6-磷酸
脱氢酶(G6PD)和苹果酸酶1(ME1)转录显著上调
在ADM期间。G6PD是磷酸戊糖途径和ME1的限速酶
将苹果酸转化为丙酮酸,连接糖酵解和柠檬酸循环。此外,G6PD和
ME1酶产生NADPH,保护其免受氧化还原压力。目标1将专注于G6PD
和ME1,并确定氧化还原平衡和NADPH产生对ADM的贡献
队形。初步实验表明,这些酶的丧失增加了
腺泡细胞中的活性氧物种。目标1中提出的实验使用了基因
胰腺癌基因工程小鼠模型,稳态代谢组学,同位素示踪,
和体外原代腺泡细胞培养,以检测其对ADM和肿瘤形成的影响
当G6PD和ME1丢失时,NADPH池减少。目标2将决定如何
健康细胞和致癌细胞之间的代谢氧化还原相互作用限制了ADM。初步
实验表明,健康的腺泡细胞会分泌代谢物来抑制邻近的KRAS-
在ADM过程中表达细胞。这个目的是使用KRAS驱动的诱导性小鼠模型
胰腺癌、代谢组学和空间转录组学。拟议中的实验将
有助于识别健康细胞如何感知邻近致癌细胞的存在和
重新编程它们的细胞状态和新陈代谢,以抑制癌症的发生。总而言之,目标是
将提供关于代谢途径的新的机械性见解
推动胰腺癌的启动,从而为未来的治疗提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan DeAnna Radyk其他文献
Megan DeAnna Radyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




