Novel Algorithmic Fairness Tools for Reducing Health Disparities in Primary Care
用于减少初级保健健康差异的新颖算法公平工具
基本信息
- 批准号:10676234
- 负责人:
- 金额:$ 32.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-03 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsChronic Kidney FailureCommunitiesComprehensive Health CareDataData ScienceData SetData SourcesDevelopmentDisparityEquilibriumEquityEthicsEthnic PopulationGeographyGoalsGrantHealthHealth Services AccessibilityHealth systemHealthcareHealthcare SystemsIndividualInequityInstitute of Medicine (U.S.)KnowledgeLiteratureMeasurementMeasuresMethodologyMethodsOutcomePatient CarePerformancePhasePopulation HeterogeneityPrimary CareProcessPublic HealthQuality of CareReduce health disparitiesReproducibilityResearchSaranSpecific qualifier valueStatistical MethodsTechniquesTestingUnited StatesUnited States National Library of MedicineWorkadaptive learningalgorithm developmentalgorithmic biasbiomedical informaticscare coordinationclinical carecomputerized toolsdata registrydata resourcedesigndisparity reductionethnic diversityethnic health disparityethnic minorityexperimental studyflexibilityhealth care deliveryhealth care disparityhealth care settingshealth datahealth disparityhealth equityhealth outcome disparityimprovedinnovationinsightinterestmarginalizationmarginalized populationnovelopen sourceopen source toolperformance testspoor health outcomeprocess optimizationracial disparityracial diversityracial minorityracial populationracismrural areasimulationsocial health determinantssocioeconomicsstatistical learningtooltreatment as usual
项目摘要
PROJECT SUMMARY: Disparities in the health care system are substantial, leading to worse health outcomes
and quality of care for marginalized groups. These disparities reflect that our current health system has an
inequitable equilibrium. Imbedded within health care data are societal biases, including racism and barriers in
access to care for individuals from low socioeconomic backgrounds and rural areas. However, many
algorithmic approaches are inadequate for addressing health disparities because the algorithms do not
evaluate or optimize performance in these groups. Existing tools to ameliorate differential performance for
multiple marginalized groups in realistic health care settings are extremely limited. Our innovative approach to
the data and algorithmic bias problems in health disparities is to create a first-of-its-kind overarching
algorithmic fairness framework for multiple marginalized groups. In the initial phase, we will focus on data
transformations—intervening on the data in order to ‘de-bias’ it to represent a desired equilibrium rather than
reinforcing the unfair equilibrium. The second stage builds novel fair regression estimators to enforce fairness
constraints for prediction. Our goal is to create reusable tools that advance the equitable provision of health
care. We will accomplish this by developing generalizable methodology that follows an ethical pipeline for
algorithms guided by a social determinants of health framework. Our specific aims are to: (1) develop and test
novel data transformation methods that rely on microsimulations for de-biasing health care data, (2) develop
and test new fair penalized regression approaches optimized for multiple groups, (3) test the performance of
the new algorithmic framework for a high-impact primary care application in chronic kidney disease prioritizing
fairness for multiple racial and ethnic groups facing health disparities, and (4) create open-source
computational tools, tutorial vignettes, and a synthetic data resource for reproducible research and
dissemination. The proposed research will yield a statistically innovative reusable algorithmic fairness
framework unifying data transformations and fair regression to reduce health disparities with robust testing in a
chronic kidney disease study of quality of care. This primary care application will leverage rich registry data,
including measurements of social determinants of health, collected in usual care settings from a
geographically, racially, and ethnically diverse population across multiple payers. Our approach centers
robustness with rigorous methodological design, including comparisons to alternative existing estimators and
standard practice in comprehensive simulation studies and national, real-world registry data. Addressing health
disparities in primary care—a hub of continuous, coordinated care—has the potential for substantial impact on
improving public health via the health care system. The broad applicability of our framework and creation of
reusable computational tools will facilitate deployment in many practical settings.
项目摘要:卫生保健系统存在巨大差异,导致健康结果恶化
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sherri Rose其他文献
Sherri Rose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sherri Rose', 18)}}的其他基金
Novel Algorithmic Fairness Tools for Reducing Health Disparities in Primary Care
用于减少初级保健健康差异的新颖算法公平工具
- 批准号:
10416957 - 财政年份:2022
- 资助金额:
$ 32.38万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.38万 - 项目类别:
Research Grant














{{item.name}}会员




