Enhanced Clinical Diagnosis through Imaging and Modeling: A Machine Learning Data Fusion Framework
通过成像和建模增强临床诊断:机器学习数据融合框架
基本信息
- 批准号:10676278
- 负责人:
- 金额:$ 19.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D MRIAdoptionAgeAngiographyArchitectureBayesian learningBlood VesselsBlood VolumeBlood flowBrainBrain MappingBrain scanCerebrovascular CirculationCerebrumClinicClinicalComputational TechniqueComputer ModelsComputer SimulationCorrelation StudiesDataData SetDatabasesDoppler UltrasoundFutureGenderGoalsHealthcareHeterogeneityImageInfarctionIschemic StrokeMachine LearningMapsMeasurementMedical ImagingMedicineMethodologyModalityModelingModernizationPatientsPerfusionPhysicsPopulationPositioning AttributeProcessRadiation exposureResearchResolutionRunningScanningSchemeSourceStrokeTechniquesTechnologyTestingTimeTrainingUncertaintyValidationblood perfusioncerebral arteryclinical applicationclinical decision-makingclinical diagnosiscostdata fusionhealth applicationhemodynamicsinnovationinterestneuralnovelperfusion imagingpopulation basedpredictive modelingsensorsimulationspatiotemporalstroke patienttemporal measurement
项目摘要
PROJECT SUMMARY/ABSTRACT
In this proposal, we will use modern machine learning techniques to combine and enhance
computational modeling predictions. We will overcome the physics deficiencies that are
inherent in modeling assumptions by including ground-truth clinical measurements, but in turn
provide predictions that are more informative (higher spatial and temporal resolution) than the
original clinical measurements. Furthermore, we will implement this framework as a surrogate
model that can be used in real time and can replace current models with prohibitively high
computation cost. If successful, the proposed research will enable lab-to-bedside deployment of
a vast array of existing and future computational models and it ultimately could lead to a paradigm
shift in health care workflow.
Our overarching hypothesis is that the statistical correlations between computational
models and clinical measurements can be exploited in a probabilistic data-fusion framework
for more accurate predictions. Our multi-fidelity framework is based on an autoregressive
Gaussian Process (GP) scheme. Our proposed scheme is a non-parametric Bayesian machine
learning technique that has a probabilistic workflow and estimates uncertainty at different
levels of fidelity in a principled manner.
As a template for other clinical applications, we will develop this framework for
perfusion scanning of brain hemodynamics in healthy and stroke populations, which has a
significant health application. In Aim 1, we will simulate cerebral perfusion in healthy and
stroke populations based on CT and MR angiography (CTA and MRA) scans. We will simulate and
validate cerebral blood perfusion in healthy and stroke gender-balanced subjects. In Aim 2, we
construct subject-specific multi-fidelity models by combining computational results and
perfusion scans. We propose to leverage the multi-fidelity model to reduce scan time and
radiation exposure by incorporating simulated perfusion maps with CT perfusion scans.
项目摘要/摘要
在这份提案中,我们将使用现代机器学习技术来结合和增强
计算模型预测。我们将克服物理上的缺陷
通过包括地面真实的临床测量来建模假设所固有的,但反过来
提供信息更丰富的预测(更高的空间和时间分辨率)
原始的临床测量结果。此外,我们将以代理的形式实现此框架
可以实时使用的模型,可以用高得令人望而却步的
计算成本。如果成功,拟议的研究将使实验室到床边部署
大量现有的和未来的计算模型,它最终可能导致一种范式
医疗保健工作流程的转变。
我们的主要假设是,计算之间的统计相关性
可以在概率数据融合框架中利用模型和临床测量
以获得更准确的预测。我们的多保真框架是基于自回归的
高斯过程(GP)方案。我们提出的方案是一个非参数贝叶斯机器
一种学习技术,具有概率工作流,并在不同的
以一种原则性的方式保持一定程度的忠诚。
作为其他临床应用程序的模板,我们将为
健康人群和卒中人群脑血流动力学的灌注扫描
重要的健康应用。在目标1中,我们将模拟健康和
基于CT和MR血管成像(CTA和MRA)扫描的中风人群。我们将模拟和
验证健康和中风性别平衡受试者的脑血流灌注。在目标2中,我们
结合计算结果和数据构建特定对象的多保真模型
血流灌注扫描。我们建议利用多保真模型来减少扫描时间和
通过将模拟灌注图与CT灌注扫描相结合来进行辐射暴露。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel imaging markers for altered cerebrovascular morphology in aging, stroke, and Alzheimer's disease.
- DOI:10.1111/jon.13023
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
End to end stroke triage using cerebrovascular morphology and machine learning.
- DOI:10.3389/fneur.2023.1217796
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging.
- DOI:10.1109/tmi.2022.3161653
- 发表时间:2022-09
- 期刊:
- 影响因子:10.6
- 作者:
- 通讯作者:
Physics-informed UNets for discovering hidden elasticity in heterogeneous materials.
基于物理的 UNet,用于发现异质材料中隐藏的弹性。
- DOI:10.1016/j.jmbbm.2023.106228
- 发表时间:2024
- 期刊:
- 影响因子:3.9
- 作者:Kamali,Ali;Laksari,Kaveh
- 通讯作者:Laksari,Kaveh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hessam Babaee其他文献
Hessam Babaee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hessam Babaee', 18)}}的其他基金
Enhanced Clinical Diagnosis through Imaging and Modeling: A Machine Learning Data Fusion Framework
通过成像和建模增强临床诊断:机器学习数据融合框架
- 批准号:
10483126 - 财政年份:2021
- 资助金额:
$ 19.47万 - 项目类别:
Enhanced Clinical Diagnosis through Imaging and Modeling: A Machine Learning Data Fusion Framework
通过成像和建模增强临床诊断:机器学习数据融合框架
- 批准号:
10287669 - 财政年份:2021
- 资助金额:
$ 19.47万 - 项目类别:
Noninvasive Real-time Estimation of Cerebral Blood Flow for Personalized Stroke Assessment
用于个性化中风评估的脑血流量无创实时估计
- 批准号:
9898495 - 财政年份:2019
- 资助金额:
$ 19.47万 - 项目类别:
相似海外基金
Disease Analysis Based on Respiratory Displacement Estimation to All-field of Lung from Thoracic 4D-MRI and Fusion with CT
基于胸部 4D-MRI 肺部全视野呼吸位移估计并与 CT 融合的疾病分析
- 批准号:
22K18181 - 财政年份:2022
- 资助金额:
$ 19.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying risk factors for the post replacement-related complications following aortic valve replacement in patients with severe aortic valve stenosis with 4D-MRI blood flow dynamics imaging.
通过 4D-MRI 血流动力学成像识别严重主动脉瓣狭窄患者主动脉瓣置换术后相关并发症的危险因素。
- 批准号:
19K17510 - 财政年份:2019
- 资助金额:
$ 19.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
9980333 - 财政年份:2019
- 资助金额:
$ 19.47万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10204956 - 财政年份:2019
- 资助金额:
$ 19.47万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10653082 - 财政年份:2019
- 资助金额:
$ 19.47万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10413106 - 财政年份:2019
- 资助金额:
$ 19.47万 - 项目类别:
Numerical Prediction and Measurement of Infrarenal Abdominal Aortic Aneurysm Blood Flow using 4D MRI
使用 4D MRI 进行肾下腹主动脉瘤血流的数值预测和测量
- 批准号:
511305-2017 - 财政年份:2017
- 资助金额:
$ 19.47万 - 项目类别:
University Undergraduate Student Research Awards
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
8943325 - 财政年份:2015
- 资助金额:
$ 19.47万 - 项目类别:
Developement of 4D MRI microscopy for monitoring growth process of rhizome axillary bud
开发用于监测根茎腋芽生长过程的4D MRI显微镜
- 批准号:
15K04719 - 财政年份:2015
- 资助金额:
$ 19.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
9319686 - 财政年份:2015
- 资助金额:
$ 19.47万 - 项目类别: