Software tools for reproducibly simulating, analyzing, and visualizing biomodels
用于可重复地模拟、分析和可视化生物模型的软件工具
基本信息
- 批准号:10676069
- 负责人:
- 金额:$ 15.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-13 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchivesBig Data MethodsBiochemicalBiological ProcessCollaborationsComputer softwareDataDatabasesDepositionEducational workshopEnsureGenus MenthaIndividualJournalsKnowledgeLanguageMapsMetadataModelingOnline SystemsOntologyPythonsReportingReproducibilityResearch PersonnelResourcesRunningSemanticsServicesSoftware EngineeringSoftware ToolsSource CodeSystemSystems BiologyTestingTrainingValidationVisualVisualizationVisualization softwareWorkbiochemical modelbiological systemsdata visualizationdesigndigitaldigital modelsexperimental studyimprovedinteractive toolinteroperabilitymodels and simulationnew technologynovelopen sourceoutreachpredictive modelingrepositorysimulationtechnology research and developmenttooluser-friendlyweb platformweb serverweb siteweb-based tool
项目摘要
TECHNOLOGY RESEARCH & DEVELOPMENT 3: PROJECT SUMMARY
Models represent our knowledge, observations and hypotheses in a testable digital framework. Because
models are digital, it should be easy to reuse models and reproduce simulation results. However, many
dynamic biochemical models are not reusable and many simulation results are not reproducible, including
models and simulation results reported in standard formats such as the Systems Biology Markup Language
(SBML) and the Simulation Experiment Description Markup Language (SED-ML). This irreproducibility limits
the impact of modeling by inhibiting researchers from reusing models and simulation results for additional
studies and combining models of individual biological processes into meta-models of entire biological systems.
Currently, models are hard to reuse and simulations are hard to reproduce because (a) few researchers report
the metadata needed to reproduce simulations, (b) there are many incompatible simulators, (c) there is no
simulation results repository, (d) there is no standard for reducing simulation results, (e) there is no standard
for describing results visualizations, and (f) there are inadequate tools for visualizing simulation results.
To address these problems, we will develop novel tools and public servers for (a) using existing simulators to
reproducibly simulate a wide range of models and (b) storing and (c) visualizing simulation results:
1. We will build a database for storing models, simulation experiments, their results, and their metadata
which will mint DOIs and support queries over simulation results. The system will help researchers
share and retrieve simulation results and apply big data analytics to simulation results. In turn, the
system will help researchers reuse simulation experiments and reproduce simulation results.
2. We will build a simulation system which provides a common interface to multiple simulators that each
support individual simulation algorithms and modeling domains. This will make it easy for researchers
to reuse models and reproduce simulations without having to install domain-specific simulators.
3. We will build a web-based system for using the simulation system and simulation results database to
interactively simulate and visualize models in a browser. This will enable researchers to retrieve
deposited simulation results, request new simulations, and visually analyze simulation results.
To ensure our tools advance biomodeling, we will develop our tools in conjunction with several CPs and SPs
which will provide model repositories and journals web-based tools for interactively simulating and visualizing
reported models. These CPs will push us to develop user-friendly tools, and we will pull the CPs to require
model authors to annotate their simulation experiments so they are reproducible.
To help researchers use our software, we will work with TR&Ds 1 and 2 to combine our software into a
reproducible modeling workflow. We will also extensively document our software and distribute it open-source.
In addition, as part of the Training and Dissemination Core, we will develop tutorials and organize workshops.
技术研究与开发3:项目总结
模型在可测试的数字框架中代表我们的知识,观察和假设。因为
模型是数字化的,应该很容易重复使用模型和再现模拟结果。但不少
动态生化模型不可重复使用,许多模拟结果不可再现,包括
以标准格式报告的模型和模拟结果,例如系统生物学标记语言
(SBML)和仿真实验描述标记语言(SED-ML)。这种不可再现性限制了
建模的影响,通过抑制研究人员重用模型和模拟结果,
研究并将单个生物过程的模型组合成整个生物系统的元模型。
目前,模型很难重复使用,模拟也很难重现,因为(a)很少有研究人员报告说,
再现模拟所需的元数据,(B)有许多不兼容的模拟器,(c)没有
模拟结果库,(d)没有减少模拟结果的标准,(e)没有标准
用于描述结果可视化,以及(f)用于可视化模拟结果的工具不足。
为了解决这些问题,我们将开发新的工具和公共服务器,以便(a)使用现有的模拟器,
可再现地模拟大范围的模型,以及(B)存储和(c)可视化模拟结果:
1.我们将建立一个数据库来存储模型、模拟实验、其结果及其元数据
它将生成DOI并支持对模拟结果的查询。该系统将帮助研究人员
共享和检索仿真结果,并将大数据分析应用于仿真结果。符合要求的细粉则随
系统将帮助研究人员重复使用模拟实验和再现模拟结果。
2.我们将构建一个仿真系统,它为多个仿真器提供一个公共接口,每个仿真器
支持单独的仿真算法和建模域。这将使研究人员很容易
重用模型和再现仿真,而无需安装特定于域的仿真器。
3.我们将建立一个基于Web的系统,利用仿真系统和仿真结果数据库,
在浏览器中以交互方式模拟和可视化模型。这将使研究人员能够检索
存储仿真结果、请求新的仿真以及可视化地分析仿真结果。
为了确保我们的工具能够推进生物建模,我们将与几个CP和SP一起开发我们的工具
它将为交互式模拟和可视化提供基于网络的模型库和期刊工具
报道的模型。这些CP将推动我们开发用户友好的工具,我们将拉动CP要求
模型作者注释他们的模拟实验,使他们是可重复的。
为了帮助研究人员使用我们的软件,我们将与TR& D 1和2合作,将我们的软件联合收割机组合成一个
可再现的建模工作流。我们还将广泛记录我们的软件,并将其开源。
此外,作为培训和传播核心的一部分,我们将开发教程并组织研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ion I. Moraru其他文献
Integrated models, model languages, model repositories, simulation experiments, simulation tools and data visualizations enable facile model reuse with biosimulations
- DOI:
10.1016/j.bpj.2021.11.2118 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Bilal Shaikh;Lucian P. Smith;Michael L. Blinov;Herbert M. Sauro;Ion I. Moraru;Jonathan R. Karr - 通讯作者:
Jonathan R. Karr
System Biology Pathway Exchange - Bridging Pathway Data And Quantitative Models
- DOI:
10.1016/j.bpj.2009.12.1042 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Oliver Ruebenacker;Michael L. Blinov;Ion I. Moraru - 通讯作者:
Ion I. Moraru
Cell-membrane phospholipase C is involved in inducing the antiviral effect of interferon
细胞膜磷脂酶 C 参与诱导干扰素的抗病毒作用
- DOI:
- 发表时间:
1989 - 期刊:
- 影响因子:4
- 作者:
L. Popescu;C. Cernescu;Ion I. Moraru;Constantinescu Sn;F. Balta;M. Manciulea;E. Brǎiloiu;L. Buzilă - 通讯作者:
L. Buzilă
Towards Unifying Systems Biology - Using Pathway Data in Biopax Format for SBML Simulators
- DOI:
10.1016/j.bpj.2008.12.3432 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Oliver Ruebenacker;Ion I. Moraru;Michael L. Blinov - 通讯作者:
Michael L. Blinov
Virtual cell modeling and simulation software
- DOI:
10.1016/j.bpj.2022.11.2249 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Michael L. Blinov;Ion I. Moraru;James C. Schaff;Leslie M. Loew - 通讯作者:
Leslie M. Loew
Ion I. Moraru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ion I. Moraru', 18)}}的其他基金
Center for Reproducible Systems for Biomedical Modeling
生物医学建模可重复系统中心
- 批准号:
10676065 - 财政年份:2018
- 资助金额:
$ 15.94万 - 项目类别:
HIGH PERFORMANCE COMPUTING INFRASTRUCTURE FOR THE VIRTUAL CELL
虚拟单元的高性能计算基础设施
- 批准号:
8362494 - 财政年份:2011
- 资助金额:
$ 15.94万 - 项目类别:
Acquisition of computer system for computational biology
获取计算生物学计算机系统
- 批准号:
7794511 - 财政年份:2010
- 资助金额:
$ 15.94万 - 项目类别:
HIGH PERFORMANCE COMPUTING INFRASTRUCTURE FOR THE VIRTUAL CELL
虚拟单元的高性能计算基础设施
- 批准号:
8169567 - 财政年份:2010
- 资助金额:
$ 15.94万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Research Grant