An Affordable and Versatile Two-Dimensional Cell Isolation and Tracking Platform Based on Image Machine Learning and Maskless Photolithography Single Cell Encapsulation
基于图像机器学习和无掩模光刻单细胞封装的经济实惠且多功能的二维细胞分离和跟踪平台
基本信息
- 批准号:10684026
- 负责人:
- 金额:$ 23.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAntibodiesBiological MarkersBiomedical ResearchBlood specimenCancer cell lineCell CountCell Differentiation processCell SeparationCell SizeCellsCellular MorphologyChargeClassificationClinical MedicineCodeComplexComputer softwareCore FacilityDataData SetDependenceDetectionDevicesDropsEncapsulatedEquipmentFluorescenceFluorescence MicroscopyFluorescence-Activated Cell SortingHematopoietic stem cellsHydrogelsImageIn SituIndividualIntelligenceInternetInterruptionLabelLaboratoriesLearningLearning ModuleLightLiquid substanceMachine LearningMagnetismMethodsMicrofluidic MicrochipsMicrofluidicsMicroscopeModelingNeoplasm Circulating CellsOpticsPatternPerformancePhenotypePopulationPriceProceduresPropertyRecoveryResearchResolutionSample SizeSamplingShapesSignal TransductionSortingSpeedStressSystemSystems AnalysisTechnologyTimeTrainingUpdateWorkbiological researchbiomaterial compatibilitycapsulecell injurycell typecellular imagingcostcost estimatedata sharingdesigndigitalelectric fieldfluorescence imagingfluorescence microscopein situ imaginglithographymachine learning algorithmmachine learning modelmonocyteopen sourceoperationshear stressstem cellstooltwo-dimensionalvibrationvoltage
项目摘要
An Affordable and Versatile Two-Dimensional Cell Isolation and Tracking Platform Based on Image Machine
Learning and Maskless Photolithography Single Cell Encapsulation
Current commercial cell sorters typically use sheath flow to align cells into a single profile and sort cells based
on fluorescence signal or images. The single profile alignment limits the throughput and requires complex
hardware and expensive equipment for high-speed sorting. The usage of high-speed sheath flow also generates
high stress on cells, which makes it not suitable for fragile or sensitive cells such as stem cells for downstream
application. Some sticky cells such as monocytes or too many dead cells in the sample can interrupt or even
clog the flow. Such cell sorter also usually requires a significant amount of starting cell number. Considering the
yield, purity, and fluid dead volume, it is challenging to sort out cells of rare population such as subset of stem
cells or circulating tumor cells in blood sample. There are strong needs from small labs for an affordable and
versatile cell sorting platform applicable to a variety of cell types. The objectives of the proposed work are to: 1.
Develop a high-speed machine learning-based cell classification module. The module will enable real-time
detection of target cells inside a wide microfluidic channel based on brightfield or fluorescent images. 2. Develop
a stop flow lithography-based 2D cell sorting platform in combination with acoustic field cell array patterning that
will generate encoded encapsulations of target cells of different sizes. 3. Integrate the machine learning detection
and maskless lithography with the size-based filtering/sorting of the cell into an affordable cell sorter. The setup
can be mounted onto existing microscope and high-resolution camera, along with a web-lab flow controller and
a UV projector, makes a versatile and affordable cell sorter.
The proposed method can sort multiple cell types based on high content image information and machine learning.
This eliminates the dependency on specific antibody types which is the basis of fluorescence-activated cell
sorting (FACS) or magnetics-activated cell sorting (MACS). The proposed method can use simple microfluidic
devices for sorting different types of target cells in high purity with minimum requirement on starting cell number,
thus is applicable to rare subset of a large sample or rare cells. Maskless lithography based on digital micromirror
device (DMD) is used to stamp encoded ID to track individual cells which is convenient for downstream analysis.
The 2D wide platform can avoid high shear flow-induced cell damage or property change in the cell sorting
channel, thus is suitable for gentle cells such as stem cells. The wide channel can also avoid the potential cell
clogging problem in a regular cell sorter. By updating the machine learning algorithm and sharing datasets and
pre-trained models, as well as the availability of cameras and projectors of better resolution, the proposed project
leads to an affordable, expandable, powerful, and universal cell sorting platform.
一种实惠、通用的基于图像机的二维细胞分离与跟踪平台
学习和无掩模光刻单细胞封装
目前的商业细胞分选器通常使用鞘流将细胞排列成单个轮廓,并基于
在荧光信号或图像上。单一的纵断面线形限制了吞吐能力,要求复杂
硬件和昂贵的设备,用于高速分拣。高速鞘流的使用也产生了
对细胞压力大,不适合干细胞等脆弱或敏感细胞下游使用
申请。样本中的一些粘性细胞,如单核细胞或过多的死亡细胞,会中断甚至
堵住人流。这种细胞分类器通常还需要相当数量的起始细胞编号。考虑到
产量,纯度和液体死亡体积,它是具有挑战性的稀有群体的细胞,如干细胞的子集
血液样本中的细胞或循环中的肿瘤细胞。小型实验室对经济实惠的
多功能细胞分选平台,适用于多种细胞类型。拟议工作的目标是:1.
开发了一个高速的基于机器学习的细胞分类模块。该模块将启用实时
基于Brightfield或荧光图像检测宽微流控通道内的目标细胞。2.发展
一种结合声场细胞阵列构图的基于停流光刻的2D细胞分选平台,
将生成不同大小的目标单元格的编码封装。3.集成机器学习检测
以及无掩膜光刻,其具有基于大小的细胞过滤/分选到负担得起的细胞分选器中。设置
可以安装在现有的显微镜和高分辨率摄像头上,以及网络实验室流量控制器和
一种紫外线投影仪,使之成为一种多功能和负担得起的细胞分选器。
该方法可以基于高含量图像信息和机器学习对多种细胞类型进行分类。
这消除了对特定抗体类型的依赖,这是荧光激活细胞的基础
分选(FACS)或磁激活细胞分选(MACS)。所提出的方法可以使用简单的微流控技术
对起始细胞数要求最低的高纯度分选不同类型的靶细胞的装置,
因此适用于大样本或稀有细胞的稀有子集。基于数字微镜的无掩模光刻
设备(DMD)被用来标记编码的ID以跟踪单个细胞,这便于后续分析。
2D宽平台可以避免高剪切流导致的细胞损伤或细胞分选中的性质变化
通道,因此适合温和的细胞,如干细胞。宽沟道还可以避免潜在的电池
常规细胞分选机中的堵塞问题。通过更新机器学习算法和共享数据集
预先培训的模型以及提供更高分辨率的照相机和投影仪,拟议的项目
带来了一个负担得起、可扩展、功能强大和通用的细胞分类平台。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hierarchical Vessel Network-Supported Tumor Model-on-a-Chip Constructed by Induced Spontaneous Anastomosis.
- DOI:10.1021/acsami.2c19453
- 发表时间:2023-02-08
- 期刊:
- 影响因子:9.5
- 作者:Zhou, Yuyuan;Wu, Yue;Paul, Ratul;Qin, Xiaochen;Liu, Yaling
- 通讯作者:Liu, Yaling
Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery.
- DOI:10.1021/acsami.2c23305
- 发表时间:2023-03-29
- 期刊:
- 影响因子:9.5
- 作者:Wu, Yue;Zhao, Yuwen;Zhou, Yuyuan;Islam, Khayrul;Liu, Yaling
- 通讯作者:Liu, Yaling
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YEVGENY BERDICHEVSKY其他文献
YEVGENY BERDICHEVSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YEVGENY BERDICHEVSKY', 18)}}的其他基金
Anticonvulsant screening using chronic epilepsy models
使用慢性癫痫模型进行抗惊厥筛查
- 批准号:
9316238 - 财政年份:2017
- 资助金额:
$ 23.72万 - 项目类别:
Anticonvulsant screening using chronic epilepsy models
使用慢性癫痫模型进行抗惊厥筛查
- 批准号:
10206883 - 财政年份:2017
- 资助金额:
$ 23.72万 - 项目类别:
Space-division multiplexing optical coherence tomography for large-scale, millisecond resolution imaging of neural activity
用于神经活动大规模、毫秒分辨率成像的空分复用光学相干断层扫描
- 批准号:
9055841 - 财政年份:2015
- 资助金额:
$ 23.72万 - 项目类别:
Space-division multiplexing optical coherence tomography for large-scale, millisecond resolution imaging of neural activity
用于神经活动大规模、毫秒分辨率成像的空分复用光学相干断层扫描
- 批准号:
9144804 - 财政年份:2015
- 资助金额:
$ 23.72万 - 项目类别:
Novel optical imaging and pacing platform for developmental cardiology
用于发育心脏病学的新型光学成像和起搏平台
- 批准号:
8957993 - 财政年份:2015
- 资助金额:
$ 23.72万 - 项目类别:
Microfluidic-multiple electrode array platform for scalable analysis of epilepsy
用于癫痫可扩展分析的微流控多电极阵列平台
- 批准号:
9354289 - 财政年份:2014
- 资助金额:
$ 23.72万 - 项目类别:
Microfluidic-multiple electrode array platform for scalable analysis of epilepsy
用于癫痫可扩展分析的微流控多电极阵列平台
- 批准号:
8754939 - 财政年份:2014
- 资助金额:
$ 23.72万 - 项目类别:
Microfabricated interface for organotypic neural circuits.
用于器官神经回路的微加工接口。
- 批准号:
7485277 - 财政年份:2008
- 资助金额:
$ 23.72万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 23.72万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 23.72万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 23.72万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 23.72万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别: