Machine Perception Nanosensor Array Platform to Capture Whole Disease Fingerprints of Early Stage Pancreatic Cancer

机器感知纳米传感器阵列平台可捕获早期胰腺癌的整个疾病指纹

基本信息

  • 批准号:
    10684240
  • 负责人:
  • 金额:
    $ 9.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY AND ABSTRACT This project endeavors to build a nanosensor array platform technology to detect whole disease fingerprints from patient biofluids to facilitate diagnosis and biomarker discovery efforts in pancreatic cancer. Pancreatic cancer is currently the fourth leading cause of cancer-related mortality in the US. The ability to diagnose pancreatic cancer at early stages would allow many patients to be actively treated, thereby greatly improving their outcomes. Serum biomarker measurements have been widely used as diagnostic/prognostic indicators, but many markers are not sufficient for specific assessments of disease states. Major factors limiting precise diagnosis us- ing these biomarkers include their low sensitivity at high specificity for diseases and the overall dearth of estab- lished molecular markers. Therefore, innovative approaches to improve disease-state specificity/sensitivity and biomarker discovery efforts are needed to achieve accurate identification of many conditions. I believe that the differentiation of disease from normal biofluids may be achieved by the detection of a “disease fingerprint” by collecting large data sets of molecular binding interactions to a diverse set of moderately selective sensors. I will build a sensor array comprising organic color centers (covalently-modified carbon nanotubes) stabilized with DNA to transduce subtle differences in physicochemical properties of molecules in biofluids. With sufficient diversity, the sensors can differentiate biofluids by disease status with the aid of machine learning pro- cesses. This platform will also be used to facilitate biomarker discovery efforts. In preliminary data, I discovered that the responses collected from hundreds of patient samples and interpreted by machine learning algorithms can beat established serum biomarker measurements. I plan to leverage this technology to develop a robust diagnostic sensor platform to acquire disease fingerprints of pancreatic cancer in patients biofluids to significantly increase sensitivity and specificity over single biomarkers and to accelerate biomarker discovery processes. I propose to investigate: 1) the potential of this technology for the early detection of pancreatic cancer, 2) the molecular mechanism of the response, and 3) the potential for this platform to enable the discovery of new biomarkers. In the 2-year mentored (K99) period of the award, I aim to develop a machine perception nanosen- sor technology with the focusing problem of pancreatic cancer detection and establish the selection rules in the sensor array construction and the workflow of machine learning-based model development. For the 3-year in- dependence (R00) period, I aim to systematically investigate how to render the machine learning models trans- parent to understand the mechanism of high prediction accuracy and discover effective biomarker combinations for clinical validation studies. Successful completion of the proposed work will result in a validated platform to enable concomitant identification of early disease states and acceleration of protein biomarker discovery pro- cesses in pancreatic cancer.
项目总结和摘要 本项目致力于建立一个纳米传感器阵列平台技术,以检测整个疾病指纹, 患者的生物流体,以促进胰腺癌的诊断和生物标志物发现工作。胰腺癌 目前是美国癌症相关死亡的第四大原因。诊断胰腺癌的能力 早期癌症将使许多患者得到积极治疗,从而大大改善他们的结果。 血清生物标志物测量已被广泛用作诊断/预后指标,但许多标志物, 不足以对疾病状态进行具体评估。限制精确诊断的主要因素是- 使用这些生物标志物包括它们对疾病的高特异性的低敏感性和总体缺乏建立。 分子标记。因此,改善疾病状态特异性/敏感性和 需要进行生物标记物发现的努力以实现许多病症的准确鉴定。我相信 疾病与正常生物流体的区分可以通过检测“疾病指纹”来实现, 收集分子结合相互作用的大数据集到不同的中等选择性传感器集合。 我将建立一个传感器阵列,包括有机色心(共价修饰的碳纳米管)稳定 用DNA来解释生物流体中分子物理化学性质的细微差异。以足够 多样性,传感器可以在机器学习的帮助下根据疾病状态区分生物流体, cesses。该平台还将用于促进生物标志物的发现工作。在初步数据中,我发现 从数百个患者样本中收集的反应,并通过机器学习算法进行解释, 可以胜过已建立的血清生物标志物测量。我计划利用这项技术开发一个强大的 诊断传感器平台,以获取胰腺癌患者生物流体中的疾病指纹, 提高了对单一生物标志物的灵敏度和特异性,并加速了生物标志物的发现过程。我 我建议调查:1)这项技术在胰腺癌早期检测方面的潜力,2) 反应的分子机制,以及3)该平台能够发现新的 生物标志物。在为期2年的指导(K99)期间的奖项,我的目标是开发一个机器感知nanosen- 分类技术与胰腺癌检测的聚焦问题相结合,建立了胰腺癌检测中的选择规则, 传感器阵列构建和基于机器学习的模型开发工作流程。三年来, 依赖(R 00)期间,我的目标是系统地研究如何使机器学习模型的跨- 父母了解高预测准确性的机制,并发现有效的生物标志物组合 用于临床验证研究。成功完成拟议的工作将产生一个经过验证的平台, 能够同时识别早期疾病状态并加速蛋白质生物标志物的发现, 胰腺癌的治疗

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mijin Kim其他文献

Mijin Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mijin Kim', 18)}}的其他基金

Machine Perception Nanosensor Array Platform to Capture Whole Disease Fingerprints of Early Stage Pancreatic Cancer
机器感知纳米传感器阵列平台可捕获早期胰腺癌的整个疾病指纹
  • 批准号:
    10507496
  • 财政年份:
    2022
  • 资助金额:
    $ 9.94万
  • 项目类别:

相似海外基金

IGF::OT::IGF: SBIR Phase I Award for A System for the Specification of Acute THC Impairment Using Validated Algorithms Period of Performance 09/30/2018 to 03/30/2019
IGF::OT::IGF:使用经过验证的算法的急性 THC 损伤规范系统获得 SBIR 第一阶段奖 执行期间 09/30/2018 至 03/30/2019
  • 批准号:
    9806025
  • 财政年份:
    2018
  • 资助金额:
    $ 9.94万
  • 项目类别:
ICS IG 2014 Computational Biology Undergraduate Summer Student Health Research award - Design and implementation of algorithms for finding short motifs in protein-protein interactions associated with prostate cancer.
ICS IG 2014 计算生物学本科生暑期学生健康研究奖 - 设计和实现算法,用于寻找与前列腺癌相关的蛋白质-蛋白质相互作用中的短基序。
  • 批准号:
    308975
  • 财政年份:
    2014
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Studentship Programs
Research Initiation Award: Efficient Algorithms for Automatic Parallel Program Decomposition
研究启动奖:自动并行程序分解的高效算法
  • 批准号:
    9409736
  • 财政年份:
    1994
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Parallel Algorithms for Scalable Multicomputers
研究启动奖:可扩展多计算机并行算法
  • 批准号:
    9308966
  • 财政年份:
    1993
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Algorithms for On-Line and Distributed Systems
研究启动奖:在线和分布式系统算法
  • 批准号:
    9309456
  • 财政年份:
    1993
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Efficient Algorithms in Combinatorial Optimization
总统青年研究员奖:组合优化中的高效算法
  • 批准号:
    9157199
  • 财政年份:
    1991
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Parallel Algorithms for Integer and Mixed Integer Nonlinear Programs Arising in the Management and Design of Chemical Processes
总统青年研究员奖:化学过程管理和设计中出现的整数和混合整数非线性程序的并行算法
  • 批准号:
    9058073
  • 财政年份:
    1990
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award-Genetic Algorithms andMachine Learning in Dynamic Systems Control
总统青年研究员奖-动态系统控制中的遗传算法和机器学习
  • 批准号:
    9096245
  • 财政年份:
    1990
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Rapid Numerical Algorithms for Scientific Computation
总统青年研究员奖:科学计算快速数值算法
  • 批准号:
    9058579
  • 财政年份:
    1990
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Techniques for Design and Analysis of Short Memory Stochastic Adaptive Control Algorithms
研究启动奖:短记忆随机自适应控制算法设计与分析技术
  • 批准号:
    8910088
  • 财政年份:
    1989
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了