Omics Technology facility
组学技术设施
基本信息
- 批准号:10703083
- 负责人:
- 金额:$ 82.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAlgorithmsAntibodiesAreaBioinformaticsBiologicalBiological AssayBiologyCCRCellsChIP-seqClassificationClinicalCommunitiesComputational BiologyContractorCooperative Research and Development AgreementCustomDNADNA analysisDNA sequencingDataData AnalysesDetectionDevelopmentEnhancersEpigenetic ProcessFoundationsFundingGene RearrangementGenesGeneticGenomeGoalsImmunogenomicsIndustrializationIntentionInternetLaboratoriesLeftMachine LearningMalignant NeoplasmsMediatingMethodsMicrococcal NucleaseMolecular ProfilingMolecular TargetMutation DetectionOncogenesPositioning AttributeProteomicsProtocols documentationRNAResearchResearch PersonnelResourcesSequence AnalysisStructureT-LymphocyteTechnologyTrainingTumor AntigensUnited States National Institutes of HealthValidationWorkassay developmentbasebiomarker developmentclinical biomarkersconvolutional neural networkepigenetic regulationexome sequencinggenome sequencinginnovationmass spectrometric imagingmembernew technologynext generation sequencingoperationrecruitresponsescreeningsingle-cell RNA sequencingtargeted sequencingtechnology developmenttooltranscriptome sequencingtumorwhole genome
项目摘要
As the project was started in this fiscal year, the main effort was focused on the establishment of operation and in the development of core technologies. A. Team formation: 1. Web lab: Two additional members were transferred to us in April of FY22 from the previous Molecular Profile/Clinomics Core, one of which had since left NCI in June 22. We'll fill in this vacate position in FY23. 2. IT team: Two members were recruited to the IT team via the NCI Frederick contractor. This IT team is currently helping to establish the pipelines for Next Generation Sequencing (NGS) data analysis. B. Core technology development. We are mainly focused on establishing NGS-based technologies for discovery cancer drivers, and for understanding biological mechanisms. Specifically, the following technologies are established or near establishment. 1. NGS for cancer mutation detection. We adapted methods for both DNA and RNA Exome sequencing aimed for detection SNV, deletion, an insertion. 2. NGS for expression and fusion detection. The staff in the lab were trained for RNA Exome seq for the detection of fusions, and for expression analysis. 3. Epigenetic regulation. We adapted two different methods for chip-seq, including antibody-mediated DNA cutting by micrococcal nucleases and transposes. 4. Targeted sequencing of cancer gene panels 5. Customized assay development and sequencing of genes involved in T-cell mediated responses against tumor antigens 6. Validation of the NGS methods for their intended research or clinical use, respectively 7. Refining the analytical pipelines for NGS data analysis
由于该项目在本财政年度启动,主要工作集中在 建立业务和开发核心技术。A.团队组建:1. Web实验室:2022财年4月,又有两名成员从之前的 分子概况/临床组学核心,其中一个自6月22日离开NCI。我们会填补 这一职位将在2023财年空缺。2. IT团队:两名成员通过 弗雷德里克承包商。该IT团队目前正在帮助建立管道, 下一代测序(NGS)数据分析。B。核心技术开发。我们主要 专注于建立基于NGS的技术,用于发现癌症驱动因素, 了解生物机制。具体而言,建立了以下技术 或接近建立。1.用于癌症突变检测的NGS。我们采用了两种DNA 以及RNA外显子组测序,旨在检测SNV、缺失、插入。2. NGS用于 表达和融合检测。实验室的工作人员接受了RNA外显子组测序的培训, 融合检测和表达分析。3.表观遗传调节。我们改编了两个 不同的芯片测序方法,包括抗体介导的微球菌DNA切割, 核酸酶和转座。4.癌症基因组的靶向测序5.定制检测 参与T细胞介导的抗肿瘤反应的基因的开发和测序 抗原6.验证NGS方法用于其预期研究或临床用途, 分别为7。优化NGS数据分析的分析管道
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Cao其他文献
Liang Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Cao', 18)}}的其他基金
Preclinical Development of Novel Targeted Therapeutics Against Pediatric Sarcoma
小儿肉瘤新型靶向治疗药物的临床前开发
- 批准号:
8763754 - 财政年份:
- 资助金额:
$ 82.28万 - 项目类别:
Preclinical Development of Novel Targeted Therapeutics Against Pediatric Sarcoma
小儿肉瘤新型靶向治疗药物的临床前开发
- 批准号:
8350134 - 财政年份:
- 资助金额:
$ 82.28万 - 项目类别:
Preclinical Development of Novel Targeted Therapeutics Against Pediatric Sarcoma
小儿肉瘤新型靶向治疗药物的临床前开发
- 批准号:
8554103 - 财政年份:
- 资助金额:
$ 82.28万 - 项目类别:
Design, Develop, Validate, and Implement Biomarkers for Clinical Investigations
设计、开发、验证和实施用于临床研究的生物标志物
- 批准号:
8158346 - 财政年份:
- 资助金额:
$ 82.28万 - 项目类别:
Preclinical Development of Novel Targeted Therapeutics Against Pediatric Sarcoma
小儿肉瘤新型靶向治疗药物的临床前开发
- 批准号:
9344164 - 财政年份:
- 资助金额:
$ 82.28万 - 项目类别:
Design, Develop, Validate, and Implement Biomarkers for Clinical Investigations
设计、开发、验证和实施用于临床研究的生物标志物
- 批准号:
7969993 - 财政年份:
- 资助金额:
$ 82.28万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 82.28万 - 项目类别:
Continuing Grant














{{item.name}}会员




