Asymmetric Walking Protocol for Optimal Post-ACL Reconstruction Rehabilitation
用于最佳 ACL 重建后康复的不对称行走方案
基本信息
- 批准号:10693894
- 负责人:
- 金额:$ 12.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsAnalysis of VarianceBiomechanicsBiomedical EngineeringBiomedical ResearchCaringClinicClinicalComparative StudyComputer ModelsDataData AnalyticsDedicationsDevelopmentEffectivenessEvaluationFunctional disorderFutureGaitGait speedGoalsHealth Care CostsImpairmentIndividualInjuryInstitutionInterventionKneeKnee OsteoarthritisLaboratoriesLimb structureMachine LearningMeasuresMechanicsMedicineMentored Research Scientist Development AwardMentorsMentorshipModelingMonitorOrthopedicsOutcomeParticipantPatientsPatternPerformancePersonsPhysical therapyPopulationProtocols documentationPublic HealthQuality of lifeRehabilitation OutcomeRehabilitation therapyResearchResearch ActivityResearch PersonnelResearch TrainingResourcesStrokeTestingTherapeuticTimeTrainingTraining ActivityTranslatingTranslational ResearchTraumatic ArthropathyUnited StatesUnited States National Institutes of HealthWalkingWorkalgorithm developmentanterior cruciate ligament injuryanterior cruciate ligament reconstructionbiomechanical modelcareerclinical translationcomorbiditycomparativeeffectiveness evaluationgait examinationgait rehabilitationimprovedinnovationjoint loadingmechanical loadneuromuscularnovelnovel therapeutic interventionnovel therapeuticsprimary outcomerecruitresponserestorationreturn to sportsignal processingsimulationskillssuccess
项目摘要
Project Abstract
The primary goal of the proposed work is to provide the PI with advanced biomedical research training,
outstanding mentorship, and protected time to become a leading independent researcher in post-anterior
cruciate ligament reconstruction (ACLR) rehabilitation. A significant consequence of the approximately 250,000
anterior cruciate ligament injuries that occur annually in the United States is that unresolved neuromuscular
impairments often lead to the development of detrimental knee osteoarthritis and other debilitating
comorbidities. Despite extensive rehabilitation, protracted deficits in gait mechanics remain and directly
contribute to detrimental knee loading. Yet, a promising finding from stroke research is that an asymmetric
walking protocol can disrupt maladaptive gait mechanics and lead to the adoption of new, healthy gait patterns.
While the success of the asymmetric protocol in correcting adverse gait patterns is often assessed by the
magnitude of the between-limb gait speed perturbation, this novel intervention to our knowledge has never
been employed in post-ACLR patients. Thus, I will employ experimental gait analysis, computational modeling,
biosignal processing, and machine learning to restore healthy post-ACLR gait mechanics and reduce knee
loading as outlined by the following aims:
Aim 1. Evaluate the effectiveness of asymmetric walking protocol gait perturbation magnitudes in
restoring healthy gait in post-ACLR individuals.
Aim 2. Develop patient-specific models to evaluate the impact asymmetric walking protocol gait
perturbation magnitude has on reducing detrimental knee loading in post-ACLR individuals.
Aim 3. Generate personalized data-driven clinical algorithm to rapidly and non-invasively predict knee
loads in a clinical setting.
The results of this research will yield new therapeutic interventions and treatment guidance to improve post-
ACLR rehabilitation outcomes.
The successful execution of the proposed work will involve a strong team of interdisciplinary researchers with
skills in signal processing, machine learning, medicine, biomedical engineering, computational modelling, and
physical therapy. The PI has assembled a dynamic team with a superb reputation for mentoring others and
they will provide her with research guidance in addition to career and professional development direction and
support. This mentorship combined with strong institutional support, state-of-the-art resources, and facilities,
and dedicated protected time will allow her to successfully perform the research and training activities outlined
in her K01 Mentored Research Scientist Development Award.
项目摘要
拟议工作的主要目标是为PI提供先进的生物医学研究培训,
杰出的指导和受保护的时间,成为后领先的独立研究员
交叉韧带重建(ACLR)康复。大约25万
在美国每年发生的前交叉韧带损伤是未解决的神经肌肉
损害通常会导致有害的膝关节骨关节炎和其他令人衰弱
合并症。尽管进行了广泛的康复,但步态力学中持久的缺陷仍然存在,直接
导致有害的膝盖负荷。然而,中风研究的一个有希望的发现是不对称的
步行方案会破坏适应不良的步态力学,并导致采用新的健康步态模式。
尽管不对称方案在纠正不良步态模式方面的成功通常由
LIMB之间的步态速度扰动的大小,这种新颖的干预从来没有
受雇于后ACLR患者。因此,我将采用实验步态分析,计算建模,
生物信号处理和机器学习以恢复健康后步态力学并减少膝盖
按照以下目的概述的加载:
目标1。评估不对称步行方案步态扰动的有效性
恢复后ACLR个体的健康步态。
目标2。开发特定于患者的模型来评估影响不对称步行方案步态
扰动幅度具有减少ACLR后个体中有害膝关节的负荷。
目标3。生成个性化数据驱动的临床算法,以快速和无创地预测膝盖
在临床环境中负载。
这项研究的结果将产生新的治疗干预措施和治疗指导,以改善后
ACLR康复结果。
拟议的工作的成功执行将涉及一支由跨学科研究人员组成的团队
信号处理,机器学习,医学,生物医学工程,计算建模和
物理疗法。 PI召集了一个充满活力的团队,在指导他人方面享有很高的声誉
除职业和专业发展方向外,他们还将为她提供研究指导
支持。这种指导结合了强大的机构支持,最先进的资源和设施,
专门的受保护时间将使她能够成功地进行研究和培训活动
在她的K01指导研究科学家发展奖中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin Morgan其他文献
Kristin Morgan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin Morgan', 18)}}的其他基金
Asymmetric Walking Protocol for Optimal Post-ACL Reconstruction Rehabilitation
用于最佳 ACL 重建后康复的不对称行走方案
- 批准号:
10449458 - 财政年份:2022
- 资助金额:
$ 12.35万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymmetric Walking Protocol for Optimal Post-ACL Reconstruction Rehabilitation
用于最佳 ACL 重建后康复的不对称行走方案
- 批准号:
10449458 - 财政年份:2022
- 资助金额:
$ 12.35万 - 项目类别:
Progression and differential control of postural and kinetic tremor with deep brain stimulation
深部脑刺激对姿势性和运动性震颤的进展和差异控制
- 批准号:
10536431 - 财政年份:2022
- 资助金额:
$ 12.35万 - 项目类别: