Asymmetric Walking Protocol for Optimal Post-ACL Reconstruction Rehabilitation

用于最佳 ACL 重建后康复的不对称行走方案

基本信息

  • 批准号:
    10693894
  • 负责人:
  • 金额:
    $ 12.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Project Abstract The primary goal of the proposed work is to provide the PI with advanced biomedical research training, outstanding mentorship, and protected time to become a leading independent researcher in post-anterior cruciate ligament reconstruction (ACLR) rehabilitation. A significant consequence of the approximately 250,000 anterior cruciate ligament injuries that occur annually in the United States is that unresolved neuromuscular impairments often lead to the development of detrimental knee osteoarthritis and other debilitating comorbidities. Despite extensive rehabilitation, protracted deficits in gait mechanics remain and directly contribute to detrimental knee loading. Yet, a promising finding from stroke research is that an asymmetric walking protocol can disrupt maladaptive gait mechanics and lead to the adoption of new, healthy gait patterns. While the success of the asymmetric protocol in correcting adverse gait patterns is often assessed by the magnitude of the between-limb gait speed perturbation, this novel intervention to our knowledge has never been employed in post-ACLR patients. Thus, I will employ experimental gait analysis, computational modeling, biosignal processing, and machine learning to restore healthy post-ACLR gait mechanics and reduce knee loading as outlined by the following aims: Aim 1. Evaluate the effectiveness of asymmetric walking protocol gait perturbation magnitudes in restoring healthy gait in post-ACLR individuals. Aim 2. Develop patient-specific models to evaluate the impact asymmetric walking protocol gait perturbation magnitude has on reducing detrimental knee loading in post-ACLR individuals. Aim 3. Generate personalized data-driven clinical algorithm to rapidly and non-invasively predict knee loads in a clinical setting. The results of this research will yield new therapeutic interventions and treatment guidance to improve post- ACLR rehabilitation outcomes. The successful execution of the proposed work will involve a strong team of interdisciplinary researchers with skills in signal processing, machine learning, medicine, biomedical engineering, computational modelling, and physical therapy. The PI has assembled a dynamic team with a superb reputation for mentoring others and they will provide her with research guidance in addition to career and professional development direction and support. This mentorship combined with strong institutional support, state-of-the-art resources, and facilities, and dedicated protected time will allow her to successfully perform the research and training activities outlined in her K01 Mentored Research Scientist Development Award.
项目摘要 拟议工作的主要目标是为PI提供先进的生物医学研究培训, 杰出的导师,并保护时间,成为一个领先的独立研究人员在后前 交叉韧带重建(ACLR)康复。一个重要的后果,约25万 在美国,每年发生的前十字韧带损伤是未解决的神经肌肉损伤, 损伤经常导致有害的膝关节骨关节炎和其他使人衰弱的疾病的发展, 合并症。尽管进行了广泛的康复,但步态力学的长期缺陷仍然存在, 导致膝关节负荷增加。然而,中风研究的一个有希望的发现是, 步行协议可以破坏不适应的步态力学,并导致采用新的健康步态模式。 虽然不对称方案在纠正不良步态模式方面的成功通常由患者的临床表现来评估, 肢体间步态速度扰动的大小,据我们所知,这种新颖的干预从未 用于ACLR后患者。因此,我将采用实验步态分析,计算建模, 生物信号处理和机器学习,以恢复健康的ACLR后步态力学和减少膝关节 按照以下目标进行装载: 目标1。评估非对称步行协议步态扰动幅度在 在ACLR后个体中恢复健康步态。 目标2.开发患者特定模型,以评估冲击不对称行走方案步态 扰动幅度对减少ACLR后个体中的有害膝关节负荷有影响。 目标3.生成个性化的数据驱动临床算法,以快速、无创地预测膝关节 在临床环境中加载。 这项研究的结果将产生新的治疗干预措施和治疗指导,以改善后, ACLR康复结果。 拟议工作的成功执行将涉及一个强大的跨学科研究人员团队, 信号处理、机器学习、医学、生物医学工程、计算建模和 物理治疗PI组建了一个充满活力的团队,在指导他人方面享有盛誉, 他们将为她提供研究指导,除了职业和专业发展方向, 支持.这种指导与强大的机构支持、最先进的资源和设施相结合, 以及专门的保护时间将使她能够成功地执行所概述的研究和培训活动 K01指导研究科学家发展奖

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristin Morgan其他文献

Kristin Morgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristin Morgan', 18)}}的其他基金

Asymmetric Walking Protocol for Optimal Post-ACL Reconstruction Rehabilitation
用于最佳 ACL 重建后康复的不对称行走方案
  • 批准号:
    10449458
  • 财政年份:
    2022
  • 资助金额:
    $ 12.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了