Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
基本信息
- 批准号:7491053
- 负责人:
- 金额:$ 44.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAcetatesAmino AcidsAnabolismAntibiotic A23187Arachidonic AcidsBe++ elementBerylliumBiochemicalBiologyBolus InfusionBradykininButhionine SulfoximineCatalysisCell CycleCell Differentiation processCellsCommitCoxibsCultured CellsCysteineCytosolic Phospholipase A2DietDinoprostoneDocosahexaenoic AcidsEMSAEicosapentaenoic AcidEicosatetraenoic AcidsElectrophoretic Mobility Shift AssayElementsEmbryoEndoglycosidasesEngineeringEnvironmentEstersEventFatty AcidsFibroblastsFish OilsFlurbiprofenGenesGlycerophospholipidsGoalsHTATIP geneHealth BenefitHousekeepingHumanHydrogen PeroxideIn VitroIonophoresKidneyKineticsKnock-in MouseKnockout MiceLearningLinoleic AcidsMammalian CellMeasuresMusNIH 3T3 CellsNon-Steroidal Anti-Inflammatory AgentsOmega-6 Fatty AcidsOutcome StudyPGF genePLA2G4A genePPIXPTGS1 genePTGS2 genePathway interactionsPenicillinsPeroxidasePeroxidasesPersonal SatisfactionPhasePhenotypePhospholipidsPlacental Growth FactorPlatelet-Derived Growth FactorPropertyProstaglandin EndoperoxidesProstaglandin-Endoperoxide SynthaseProstaglandinsProstaglandins DProstaglandins EProstaglandins FProtein IsoformsProtein OverexpressionProtoporphyrinsReduced GlutathioneRegulationResearchResearch PersonnelRoleSeriesStimulusStreptomycinSystemTestingTetradecanoylphorbol AcetateThromboxane ReceptorThromboxanesTimeconceptcyclooxygenase 1cyclooxygenase 2designfeedinghuman PLA2G4A proteinhuman prostaglandin D2 receptorimmunocytochemistryin vivokifunensinemead acidmouse PGE synthase 1phorbol-12-myristateprogesterone 11-hemisuccinate-(2-iodohistamine)programsprostaglandin R2 D-isomeraseprotein degradationresearch studyurinary
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of our studies is to understand how prostaglandin (PG) synthesis is regulated. There are two PGH synthases (PGHS-1 and -2) each able to catalyze the committed step in PG formation-oxygenation of the omega 6 fatty acid arachidonic acid (AA) or the co3 fatty acid eicosapentaenoic acid. PGHSs, also known as cyclooxygenases (COXs), are products of different genes; typically, PGHS-1 is expressed constitutively, while PGHS-2 is expressed transiently. Each PGHS isoform subserves different biologies, and a central question is how this can occur. PGHS-1 displays negative substrate cooperativity. We posit that this restricts PGHS-1 to operating only at high AA concentrations when a bolus of PGs is required for a pulsatile, housekeeping event-something that could happen at any time during the cell cycle. Unlike PGHS-1, PGHS-2 can function at all substrate concentrations. We suggest that its normal function is to provide a slow, continuous synthesis of PGs during a 1-2 h period preceding cell differentiation or replication when AA levels are low and PGHS-2 is briefly present. In short, we hypothesize that regulation of PGHS-1 activity is kinetic while control of PGHS-2 activity resides in its expression. These ideas can explain how when the isoforms are co-expressed in cells, PGHS-2 can be active while PGHS-1 is latent. The kinetic properties of PGHS-1 permit its functioning in vitro only when AA or EPA levels reach > 1-2 uM. It is probably rare that cellular EPA levels become this high; moreover, EPA is a very poor substrate for PGHS-1. So we suggest that except at unusually high EPA/AA ratios, EPA does not function as a substrate for PGHS-1 in vivo. Some beneficial effects of dietary fish oil could relate to the inactivity of PGHS-1 with EPA. Specific Aim #1 will test our concepts about the differences in the abilities of PGHS-1 and PGHS-2 to oxygenate low vs. high concentrations of endogenous AA vs. EPA in cells. Fibroblasts expressing PGHS-1 or PGHS-2 and having different EPA/AA ratios in their phospholipids will be cultured. PGE2 and PGEj, synthesis will be measured with cells stimulated to mobilize low vs. high levels of endogenous substrates. To determine if PGHS-1 can oxygenate EPA in vivo, PGHS-2 null mice will be fed fish oil and urinary, EPA-derived PGs will be quantified. Specific Aim #2 will examine an unexplored aspect of the control of PGHS-2 expression-protein degradation. Compared to PGHS-1 degradation, PGHS-2 degradation is rapid (tj/2 ~ 2 h). We have identified a 27 amino acid instability element (27-IE) near the C-terminus of PGHS-2 that targets it to the ER-associated degradation system. We will define structural features of the 27-IE involved in its function and will phenotype a newly engineered PGHS-2 knock-in mouse having a non-functional 27-IE.
描述(由申请人提供):我们研究的长期目标是了解前列腺素(PG)合成是如何调节的。有两种PGH脱氢酶(PGHS-1和-2),每种都能够催化PG形成中的关键步骤-ω 6脂肪酸花生四烯酸(AA)或ω 3脂肪酸二十碳五烯酸的氧化。PGHS,也称为环加氧酶(COX),是不同基因的产物;通常,PGHS-1组成型表达,而PGHS-2瞬时表达。每种PGHS同种型都适用于不同的生物学,核心问题是这是如何发生的。PGHS-1显示负底物协同效应。我们认为,这限制PGHS-1仅在高AA浓度下工作时,需要一团PGs的脉动,管家事件,这可能发生在细胞周期的任何时候。与PGHS-1不同,PGHS-2可以在所有底物浓度下发挥作用。我们认为,它的正常功能是提供一个缓慢的,连续的合成PG在1-2小时期间细胞分化或复制时,AA水平低,PGHS-2是短暂的。简而言之,我们假设PGHS-1活性的调节是动力学的,而PGHS-2活性的控制在于其表达。这些想法可以解释当同种型在细胞中共表达时,PGHS-2如何可以是活跃的,而PGHS-1是潜伏的。PGHS-1的动力学特性仅在AA或EPA水平达到> 1-2 μ M时才允许其在体外发挥功能。细胞EPA水平变得如此之高可能是罕见的;此外,EPA是PGHS-1的非常差的底物。因此,我们认为,除了在异常高的EPA/AA比例,EPA不作为PGHS-1在体内的底物。鱼油的某些有益作用可能与PGHS-1与EPA的失活有关。具体目标#1将测试我们关于PGHS-1和PGHS-2在细胞中抑制低浓度与高浓度内源性AA与EPA的能力差异的概念。将培养表达PGHS-1或PGHS-2并在其磷脂中具有不同EPA/AA比率的成纤维细胞。将用经刺激以动员低水平与高水平内源性底物的细胞测量PGE 2和PGE 3合成。为了确定PGHS-1是否可以在体内降解EPA,将给PGHS-2缺失小鼠喂食鱼油,并定量尿中EPA衍生的PG。具体目标#2将检查PGHS-2表达控制的未探索方面-蛋白质降解。与PGHS-1相比,PGHS-2的降解速度较快(tj/2 ~ 2 h)。我们已经确定了一个27个氨基酸的不稳定性元件(27-IE)的C-末端附近的PGHS-2的目标,它的ER相关的降解系统。我们将定义参与其功能的27-IE的结构特征,并将表型化具有非功能性27-IE的新工程化PGHS-2敲入小鼠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William L Smith其他文献
William L Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William L Smith', 18)}}的其他基金
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化作用
- 批准号:
7932688 - 财政年份:2009
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化作用
- 批准号:
7109363 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
- 批准号:
6936502 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
- 批准号:
7317189 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
- 批准号:
6677554 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
- 批准号:
8185845 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化作用
- 批准号:
8658102 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
- 批准号:
8323415 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化作用
- 批准号:
8469864 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
Catalysis by Prostaglandin Endoperoxide H Synthases
前列腺素内过氧化物 H 合成酶的催化
- 批准号:
7664259 - 财政年份:2003
- 资助金额:
$ 44.02万 - 项目类别:
相似海外基金
Development of palladium-catalyzed novel organic transformations of silylated allyl acetates
钯催化的硅烷化乙酸烯丙酯新型有机转化的开发
- 批准号:
18K05101 - 财政年份:2018
- 资助金额:
$ 44.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biosynthesis of Methylketones and 2-Alkany l Acetates
甲基酮和 2-烷酰基乙酸酯的生物合成
- 批准号:
9118188 - 财政年份:1992
- 资助金额:
$ 44.02万 - 项目类别:
Standard Grant














{{item.name}}会员




