Quantitative model-based ESUS reclassification using cardiac and cerebral vessel wall MRI
使用心脑血管壁 MRI 进行基于定量模型的 ESUS 重新分类
基本信息
- 批准号:10708032
- 负责人:
- 金额:$ 75.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmic AnalysisAlgorithmsArrhythmiaArteriesArtificial IntelligenceAtherosclerosisAtrial FibrillationCardiacCategoriesCause of DeathCephalicCerebral InfarctionCerebrumClassificationClinicalCoagulation ProcessDevelopmentDiagnosisDiagnosticDiagnostic ProcedureDiagnostic testsEtiologyEventFunctional disorderFutureGoalsHealthcare SystemsHeartHeart AtriumHospitalsImageImage AnalysisImaging TechniquesIntervention TrialIschemic StrokeLeftLesionLiteratureMachine LearningMagnetic Resonance ImagingMedicineModelingPathologyPatientsPatternPrevention MeasuresProspective StudiesProtocols documentationPublic HealthRandomizedRecurrenceRiskSchemeSecondary PreventionSourceStatistical ModelsStenosisStrokeSubgroupTechniquesTestingTrainingUnited StatesUniversitiesValidationWashingtoncardiac magnetic resonance imagingclinical imagingclinical practicedeep learningdisabilityembolic strokefollow-upheart rhythmimaging modalityimprovedindividualized medicinenoveloptimal treatmentspersonalized medicinepredictive modelingrisk minimizationstandard of carestroke patienttargeted treatmenttreatment strategytreatment trial
项目摘要
Quantitative model-based ESUS reclassification using cardiac and cerebral vessel wall MRI
Stroke is a major cause of death and the leading cause of permanent disability worldwide. Ischemic stroke is the
dominant stroke variety, representing approximately 80+% of strokes in the United States. Defining the specific
underlying pathophysiology of ischemic strokes is critical for personalized secondary prevention treatments with
the goal of minimizing the risk of recurrent events. However, even with extensive diagnostic workup in current
clinical practice, a large portion of ischemic strokes are classified as embolic stroke of undetermined source
(ESUS), leaving these patients without optimal treatment tailored to their specific pathophysiology. Recent
literature has demonstrated that among subjects diagnosed with ESUS, there may be under-detected lesions of
atherosclerosis in intra/extracranial arteries or cardiac pathology on a path towards atrial fibrillation, a so called
“atrial cardiopathy”. This implies that there are opportunities to improve the sensitivity and accuracy of etiologic
diagnosis to reduce ischemic strokes classified into the ESUS category, allowing for more targeted, personalized
secondary prevention measures. New developments in magnetic resonance imaging (MRI) of intra/extracranial
atherosclerosis and atrial cardiopathy may provide new opportunities to detect these currently under-detected
lesions and allow reclassification of ESUS patients into large-artery atherosclerosis or cardioembolic categories
leading to focused treatment strategies.
However, there are still significant challenges to using these imaging methods in practice: 1) Specialized vessel
wall and cardiac MRI (ESUS-imaging) and image analysis algorithms need to be integrated into the standard of
care workflow of stroke patients; 2) A model-based analysis will be needed that combines new findings from
ESUS-imaging and findings from existing clinical workup so that new “risk features (RFs)” can be defined for
reclassification; and 3) The impact of using these RFs on stroke subtype reclassification needs to be studied
prospectively. In this proposal, we plan to develop a model-based analysis focused on ESUS-imaging and test
the hypothesis that among acute ischemic stroke subjects diagnosed as ESUS under current clinical workup, a
new set of RFs drawn from ESUS-imaging will allow reclassification of a subset of ESUS into large-artery
atherosclerosis or cardioembolic categories. The specific aims will: 1) establish new vessel wall and cardiac MRI
(ESUS-imaging) and image analysis techniques; 2) develop a multiparametric statistical model that combines
information from the standard stroke workup and new ESUS-imaging to identify a set of RFs that can reclassify
ischemic stroke etiology; and 3) evaluate the impact of the model on ischemic stroke subtype re-classification.
If successful, this proposal will help to establish a clinical workflow that includes ESUS-imaging in ischemic stroke
workup and provide a model-based algorithm to assist in future stroke subtype classification.
基于定量模型的心、脑血管壁MRI对ESUS的再分类
中风是世界范围内死亡的主要原因,也是导致永久性残疾的主要原因。缺血性中风是
占主导地位的中风种类,约占美国中风的80%以上。定义特定的
缺血性卒中的基本病理生理学对于个性化二级预防治疗至关重要
将复发事件的风险降至最低的目标。然而,即使在当前进行了广泛的诊断检查
临床实践中,很大一部分缺血性卒中被归类为来源不明的栓塞性卒中
(ESUS),使这些患者得不到针对其特定病理生理的最佳治疗。近期
文献表明,在被诊断为ESUS的受试者中,可能存在未被发现的病变
导致心房颤动的颅内外动脉的动脉粥样硬化或心脏病理,即所谓的
“房性心脏病”。这意味着有机会提高病因学的敏感性和准确性。
诊断以减少归入ESUS类别的缺血性中风,允许更有针对性、个性化
二级预防措施。颅内外磁共振成像(MRI)的新进展
动脉粥样硬化和房性心脏病可能提供新的机会来检测目前未被发现的这些
并允许将ESUS患者重新分类为大动脉粥样硬化或心脏血栓类别
导致有针对性的治疗策略。
然而,在实践中使用这些成像方法仍然存在巨大的挑战:1)专用血管
壁和心脏磁共振成像(ESUS成像)和图像分析算法需要集成到
中风患者的护理工作流程;2)需要基于模型的分析,结合来自
ESUS-现有临床检查的成像和发现,以便可以为以下对象定义新的“风险特征(RF)”
3)使用这些RF对卒中亚型重新分类的影响需要研究
未雨绸缪。在此提案中,我们计划开发一个基于模型的分析,重点放在ESU-映像和测试上
假设在目前的临床检查下被诊断为ESU的急性缺血性中风患者中,
从ESU提取的新的RF集-成像将允许将ESU的子集重新分类为大动脉
动脉粥样硬化或心源性栓塞症。具体目标是:1)建立新的血管壁和心脏核磁共振
(ESUS-成像)和图像分析技术;2)开发多参数统计模型,将
来自标准卒中检查和新ESUS成像的信息,以识别一组可以重新分类的RF
3)评价模型对缺血性卒中亚型再分类的影响。
如果成功,这项提议将有助于建立包括缺血性中风的ESUS成像在内的临床工作流程
并提供了一种基于模型的算法来辅助将来的卒中亚型分类。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nazem Akoum其他文献
Nazem Akoum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nazem Akoum', 18)}}的其他基金
Quantitative model-based ESUS reclassification using cardiac and cerebral vessel wall MRI
使用心脑血管壁 MRI 进行基于定量模型的 ESUS 重新分类
- 批准号:
10531502 - 财政年份:2022
- 资助金额:
$ 75.73万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 75.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 75.73万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 75.73万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 75.73万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 75.73万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 75.73万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 75.73万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 75.73万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 75.73万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 75.73万 - 项目类别:
Standard Grant














{{item.name}}会员




