Long-read single-molecule protein sequencing on an array of unfoldase-coupled nanopores
在一系列解折叠酶偶联纳米孔上进行长读长单分子蛋白质测序
基本信息
- 批准号:10708013
- 负责人:
- 金额:$ 61.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:26S proteasomeAffinityAmino Acid SequenceAmino Acid SubstitutionAmino AcidsBiochemicalBioinformaticsBiologicalCell Culture TechniquesCellsCollaborationsCombinatoricsComplexCoupledDNADataDatabasesDetectionDevelopmentDevicesDiseaseEngineeringEscherichia coliEukaryotic CellFoundationsGenomeGrantHumanHuman GenomeIn VitroIndividualLabelLengthMalignant NeoplasmsMass Spectrum AnalysisMethodsModelingModificationMolecular MotorsMotorMotor ActivityMovementN-terminalNucleic AcidsNucleic acid sequencingPeptide Sequence DeterminationPeptidesPerformancePhenotypePore ProteinsPost-Translational Protein ProcessingProkaryotic CellsProtein IsoformsProtein translocationProteinsProteomeProteomicsQualifyingReagentResearch PersonnelResolutionRoleRouteSamplingScienceSequence AnalysisSignal TransductionStructureTechniquesTechnologyTechnology TransferTertiary Protein StructureTestingTouch sensationTrainingTranslatingVariantbasechemical conjugatedark matterdetection methoddetectorexperienceinsightmarkov modelmodel organismnanometernanoporeneural networkprotein aminoacid sequenceresearch and developmentsensorsequencing platformsingle moleculetechnology platformtooltranscriptometranscriptome sequencingunfoldase
项目摘要
SUMMARY
We propose to develop the foundations of a platform for direct sequencing of native, full-length protein strands
using unfoldase-coupled nanopore array technology. In principle, this technology could be used to identify
protein primary sequence, in addition to certain post-translational modifications (PTMs) found in prokaryotic
and eukaryotic cells, with single-molecule resolution. It is a foundational advance over existing and other
next-gen proteomic technologies such as Edman degradation, mass spectrometry, fluorescent label
approaches, and immunoaffinity-based methods that suffer from limitations in read length, throughput,
sensitivity, labeling efficiency, and/or the availability of suitable affinity reagents. Nanopore sequencing of intact
protein strands overcomes these limitations because the ~1 nanometer-long sensor directly interacts with the
protein strand as it is linearly-driven through the pore by the unfoldase motor protein, manifesting
sequence-specific ionic current signals. Thus, complete sequence analysis of native protein molecules can be
achieved. This method is a natural technical extension of current nanopore sequencing platforms that use
molecular motors to control movement of nucleic acid strands through nanopores in DNA/RNA sequencing.
During the grant period, we will pursue three specific aims: 1) Establish baseline methods of controlled protein
translocation through nanopore sensor arrays using unfoldase motors; 2) Develop computational and
bioinformatic methods to translate raw nanopore signal data into protein sequence information (amino acid
calling and PTM detection); and 3) Establish techniques for analysis of native proteins and proteomic samples.
Our team of investigators is uniquely qualified to take on this project:
i) We pioneered the analysis of full-length protein strands using unfoldase-coupled nanopore sensors and
recently demonstrated that the Oxford Nanopore MinION nanopore array device can be used to directly detect
peptide strands and resolve single amino acid substitutions (Nivala).
ii) Co-investigators on this application have elucidated and exquisitely characterized the enzymatic
mechanisms of unfoldase motor activity through in vitro biochemical, single-molecule, and structural studies
(Martin), and have led the development of nanopore raw signal analyses for sequencing of nucleic acids,
including direct RNA sequencing, genome and transcriptome-wide detection of modified bases, and assembly
of a human genome using ultra-long DNA nanopore reads (Jain).
iii) Collaborators will provide access to enabling nanopore technology platforms and expertise, including
highly-parallel nanopore sensor arrays and customized nanopore proteins, and offer natural routes to
technology transfer (Oxford Nanopore), contribute to characterization and comparison of project results to
traditional analysis methods such as protein mass spectrometry (Guttman), and advise on compelling
technological applications that will be enabled by successful execution of this project (Timp).
总结
我们建议开发一个平台的基础,直接测序的天然,全长蛋白质链
使用展开酶耦合纳米孔阵列技术。原则上,这项技术可以用来识别
蛋白质一级序列,除了在原核生物中发现的某些翻译后修饰(PTM)之外,
和真核细胞,用单分子分辨率。这是对现有和其他技术的基础性进步
下一代蛋白质组学技术,如Edman降解、质谱、荧光标记
方法和基于免疫亲和性的方法受到读长,通量,
灵敏度、标记效率和/或合适的亲和试剂的可用性。完整的纳米孔测序
蛋白质链克服了这些限制,因为~1纳米长的传感器直接与
当它被解折叠酶马达蛋白线性驱动通过孔时,
序列特异性离子电流信号。因此,天然蛋白质分子的完整序列分析可以被实施。
办妥了一批该方法是当前纳米孔测序平台的自然技术延伸,
分子马达用于在DNA/RNA测序中控制核酸链通过纳米孔的运动。
在资助期间,我们将追求三个具体目标:1)建立受控蛋白质的基线方法
使用解折叠酶马达通过纳米孔传感器阵列移位; 2)开发计算和
将原始纳米孔信号数据翻译成蛋白质序列信息(氨基酸)的生物信息学方法
调用和PTM检测);和3)建立用于分析天然蛋白质和蛋白质组样品的技术。
我们的研究团队是唯一有资格承担这个项目:
i)我们率先使用解折叠酶偶联的纳米孔传感器分析全长蛋白质链,
最近证明,Oxford Nanopore MinION纳米孔阵列装置可用于直接检测
肽链和解析单个氨基酸取代(Nivala)。
ii)关于该应用的共同研究者已经阐明并精细地表征了酶促反应。
通过体外生化、单分子和结构研究解折叠酶运动活性的机制
(Martin),并且已经领导了用于核酸测序的纳米孔原始信号分析的开发,
包括直接RNA测序,基因组和转录组范围内的修饰碱基检测,
使用超长DNA纳米孔读取(Jain)的人类基因组。
iii)合作者将提供使能纳米孔技术平台和专业知识,包括
高度平行的纳米孔传感器阵列和定制的纳米孔蛋白质,并提供自然的途径,
技术转让(Oxford Nanopore),有助于项目结果表征和比较,
传统的分析方法,如蛋白质质谱法(古特曼),并建议强制
技术应用,将通过成功执行该项目(Timp)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Matthew Nivala其他文献
Jeffrey Matthew Nivala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Continuing Grant