Radiation Effect on Immune Cells and the Microbiome
辐射对免疫细胞和微生物组的影响
基本信息
- 批准号:10708066
- 负责人:
- 金额:$ 28.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyApoptosisB-LymphocytesBioinformaticsBiologicalBlood CellsBlood flowCancer ControlCancer PatientCell AgingCell DeathCellsColorectal CancerDataDendritic CellsDevelopmentDoseFour-dimensionalGrowthHumanImmuneImmune System DiseasesImmune responseImmune systemImmunologicsImmunophenotypingImmunotherapyInflammatoryInnate Immune ResponseIntestinesIonizing radiationLeukopeniaLymphLymphoidMachine LearningMacrophageMalignant NeoplasmsMapsMeasurementMediatingMicrobeMitochondriaMolecularMucosal ImmunityMyelogenousNatural Killer CellsNodalNormal tissue morphologyOperative Surgical ProceduresOutcomeOxidative StressPathway interactionsPeripheral Blood Mononuclear CellPoly(A)+ RNAPopulationPre-Clinical ModelProcessRadiationRadiation Dose UnitRadiation exposureRadiation therapyRectal CancerRoleSamplingStressT-LymphocyteTimeTreatment EfficacyTreatment outcomeTumor Immunityadaptive immune responsebacterial communitycancer cellcancer therapycell typechemotherapydosagefitnessgut microbiomeimmune cell infiltrateimprintimprovedlongitudinal analysislymph nodesmicrobialmicrobiomemicrobiotamonocyteradiation effectresponseside effectsingle-cell RNA sequencingstool sampletherapy outcometooltranscriptomicstumortumor microenvironmenttumor progression
项目摘要
SUMMARY
Over the last decades, we have enhanced our understanding of the molecular mechanisms that underlie the
efficacy of RT and have also made progress to improve the efficiency of RT while reducing side effects
associated with damage to nearby normal tissues. Nevertheless, a comprehensive understanding of how RT, in
a given anatomical field, distinctively alters cancer cells, normal tissue, and infiltrating immune cells based on
each cell’s “uniqueness" is still unresolved. Further, and importantly, how these combined RT-dependent effects
on different cell types converge to influence therapeutic outcomes remains poorly understood. It is well
recognized that immune fitness is important in controlling cancer growth and progression; as such, any therapy
compromising immune cells, by default, can compromise the immune system’s ability to control malignant cells.
Whereas Project 1 focuses on the tumor and tumor microenvironment response to RT in colorectal cancer, in
this project (Project 2), we focus on the impact of RT on immune cells and the microbiome.
The overall hypothesis of Project 2 is that the immune system is an important component of the cancer response
to RT and that innate and adaptive immune responses elicited by RT are pivotal to restrict cancer progression.
However, these immunological benefits of RT are counterbalanced by deleterious effects of RT on immune cell
fitness and survival with consequent leukopenia and immune dysfunction. As such, a quantitative understanding
of the percentage and sub-populations of immune cells that are directly or indirectly (as bystanders) affected by
RT-induced damage is fundamental to completely understand the role of RT in cancer treatment outcomes.
In Project 2, firstly, we will quantify the percentage of peripheral blood mononuclear cells (PBMC), as well as
immune cells within lymph nodes located inside or outside the radiation field that are affected by RT. Secondly,
we will quantify the RT-induced damage by calculating both the accumulated RT exposure at the single cell level
and related cellular responses (i.e., apoptosis, ER mitochondrial stress, activation of inflammatory pathways,
immunological fitness). Using single cell RNA-sequencing and spatial transcriptomics, we will generate a road
map of the effects of RT on the different immune cell types (T and B cell subpopulations, dendritic cells,
monocytes, macrophages, NK cells) in relation to RT dose exposure. Additionally, we will analyze qualitative
and quantitative changes in the microbiome in samples collected before and after RT to infer how RT-mediated
changes in the intestinal microbiome could affect immune responses. In the second part of Project 2, a machine
learning approach will be utilized to integrate all of the acquired data to develop a more comprehensive view of
how RT influences immune responses and treatment outcomes.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAURA SANTAMBROGIO其他文献
LAURA SANTAMBROGIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAURA SANTAMBROGIO', 18)}}的其他基金
Biochemical and functional characterization of a novel anti-inflammatory biogenic amine
新型抗炎生物胺的生化和功能表征
- 批准号:
10610183 - 财政年份:2023
- 资助金额:
$ 28.75万 - 项目类别:
Radiation Effect on Immune Cells and the Microbiome
辐射对免疫细胞和微生物组的影响
- 批准号:
10517808 - 财政年份:2022
- 资助金额:
$ 28.75万 - 项目类别:
Effects of Glycation and Carbonylation on MHC II-restricted immunity
糖化和羰基化对 MHC II 限制性免疫的影响
- 批准号:
10335198 - 财政年份:2020
- 资助金额:
$ 28.75万 - 项目类别:
Effects of Glycation and Carbonylation on MHC II-restricted immunity
糖化和羰基化对 MHC II 限制性免疫的影响
- 批准号:
10548190 - 财政年份:2020
- 资助金额:
$ 28.75万 - 项目类别:
Effects of Glycation and Carbonylation on MHC II-restricted immunity
糖化和羰基化对 MHC II 限制性免疫的影响
- 批准号:
9974042 - 财政年份:2020
- 资助金额:
$ 28.75万 - 项目类别:
DYNAMICS AND TUNING OF THE MHC II PRESENTED PEPTIDOME
MHC II 呈递肽段的动力学和调节
- 批准号:
10468682 - 财政年份:2018
- 资助金额:
$ 28.75万 - 项目类别:
DYNAMICS AND TUNING OF THE MHC II PRESENTED PEPTIDOME
MHC II 呈递肽段的动力学和调节
- 批准号:
10016167 - 财政年份:2018
- 资助金额:
$ 28.75万 - 项目类别:
MHC class II-restricted immune response in immunosenescence
免疫衰老中 MHC II 类限制性免疫反应
- 批准号:
9065462 - 财政年份:2014
- 资助金额:
$ 28.75万 - 项目类别:
MHC class II-restricted immune response in immunosenescence
免疫衰老中 MHC II 类限制性免疫反应
- 批准号:
9141793 - 财政年份:2014
- 资助金额:
$ 28.75万 - 项目类别:
MHC class II-restricted immune response in immunosenescence
免疫衰老中 MHC II 类限制性免疫反应
- 批准号:
9269951 - 财政年份:2014
- 资助金额:
$ 28.75万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.75万 - 项目类别:
Research Grant














{{item.name}}会员




