Tyrosine degradation pathway in mitochondrial dysfunction and aging
线粒体功能障碍和衰老中的酪氨酸降解途径
基本信息
- 批准号:10707251
- 负责人:
- 金额:$ 7.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgeAgingAutomobile DrivingBiological ModelsBrainCatabolismCatecholaminesChromatinCitric Acid CycleComplexDegradation PathwayDiseaseDopamineDown-RegulationDrosophila genusDrosophila melanogasterElectron TransportEnzymesExerciseFDA approvedGenetic TranscriptionHealthHeterochromatinHomeostasisHumanHuman Cell LineKnowledgeLaboratoriesLinkLiverLongevityMammalsMetabolicMetabolic PathwayMetabolismMethylationMitochondriaModelingMolecularMusNeuronsNeurotransmittersNorepinephrineOctopaminePathway interactionsPerformancePharmaceutical PreparationsPhenocopyPhysiologicalPlasmaPredispositionProcessProductionProtein FamilyProteinsRattusRouteStressSupplementationTestingTissuesTranslatingTyramineTyrosineTyrosine AminotransferaseTyrosine Metabolism PathwayUp-Regulationage effectage relatedagedenzyme pathwayfeedingflyfrailtyhealthspanimprovedinsightinterestmitochondrial dysfunctionmodel organismnoveloverexpressionpreventprogramsprospectiveresponsesedentarytranscription factor
项目摘要
Abstract
Loss of metabolic homeostasis is a hallmark of aging that leads to increased susceptibility to diseases
and increased frailty. Although global metabolic reprogramming has been explored in different species, the
mechanisms driving this reprogramming are poorly understood. Through a deeper understanding of these
processes, the affected metabolic pathways can be directly targeted, paving the way to a delay or even a
reversal of aging in model organisms and ultimately in humans.
We previously demonstrated that the levels of enzymes in the tyrosine degradation pathway increase
with age and that either whole-body or neuronal-specific downregulation of enzymes in the tyrosine
degradation pathway significantly extend Drosophila lifespan. Mechanistically, suppression of mitochondrial
Electron Transport Chain Complex I (mETC CI) phenocopies aging and drives the upregulation of enzymes in
the tyrosine degradation pathway. Although the augmentation of tyrosine catabolism was detrimental to health-
and lifespan in our studies, the mechanism driving this age-dependent upregulation is unknown. It is also
unknown whether a similar mechanism is responsible for the age-dependent decrease of tyrosine-derived
neurotransmitters in mammals including humans.
Through our preliminary screen of potential transcription factors/regulators, we identified stonewall
(Stwl) as a prospective transcriptional regulator (TR) that is responsible for the upregulation of TAT in response
to mETC CI inhibition. Our central hypothesis is that inhibiting Stwl can prevent the augmented tyrosine
degradation associated with aging and mitochondrial dysfunction and that this process is conserved
in mammals.
In this application, we propose to determine the impact of Stwl on the levels of enzymes in the tyrosine
degradation pathway, levels of tyrosine-derived neurotransmitters, and Drosophila health- and lifespan (Aim 1);
and to test whether the effect of aging/mitochondrial dysfunction on the activity of the tyrosine degradation
pathway is conserved in mammals (Aim 2). We expect that the insights we gain will allow us to establish a
novel link between aging, mitochondrial dysfunction, tyrosine metabolism, and the production of
neurotransmitters.
摘要
代谢动态平衡的丧失是衰老的标志,它会增加疾病的易感性
以及更多的脆弱。尽管已经在不同的物种中探索了全球代谢重新编程,但
人们对这种重新编程的机制知之甚少。通过更深入地了解这些
过程中,受影响的代谢途径可以直接成为靶点,为延迟甚至是
在模式生物中,并最终在人类中逆转衰老。
我们之前证明了酪氨酸降解途径中的酶水平增加
随着年龄的增长,全身或神经元特异性下调酪氨酸酶
降解途径显著延长了果蝇的寿命。从机制上讲,线粒体的抑制
电子传输链复合体I(METC CI)的衰老和驱动酶的上调
酪氨酸降解途径。尽管酪氨酸分解代谢的增强对健康有害-
在我们的研究中,驱动这种年龄相关性上调的机制尚不清楚。它也是
尚不清楚是否有类似的机制导致酪氨酸衍生物的年龄依赖性下降
包括人类在内的哺乳动物体内的神经递质。
通过我们对潜在转录因子/调节因子的初步筛选,我们确定了石墙
(Stw1)作为一个潜在的转录调节因子(Tr),负责Tat的上调。
对mETC CI的抑制。我们的中心假设是,抑制Stwl可以防止酪氨酸增加
与衰老和线粒体功能障碍相关的降解,这一过程是保守的
在哺乳动物身上。
在这个应用中,我们建议确定stwl对酪氨酸酶水平的影响。
降解途径、酪氨酸衍生神经递质水平以及果蝇的健康和寿命(目标1);
并检测衰老/线粒体功能障碍对酪氨酸降解活性的影响
通路在哺乳动物中是保守的(目标2)。我们希望我们所获得的见解将使我们能够建立一个
衰老、线粒体功能障碍、酪氨酸代谢和血管紧张素转换酶生成之间的新联系
神经递质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey A Parkhitko其他文献
Andrey A Parkhitko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey A Parkhitko', 18)}}的其他基金
Methionine Cycle as a Mechanistic Hub for the Hallmarks of Aging
蛋氨酸循环作为衰老标志的机制中心
- 批准号:
10722723 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Deciphering the crosstalk between methionine metabolism and methyltransferases in health and disease
解读健康和疾病中蛋氨酸代谢与甲基转移酶之间的串扰
- 批准号:
10703457 - 财政年份:2022
- 资助金额:
$ 7.95万 - 项目类别:
Deciphering the crosstalk between methionine metabolism and methyltransferases in health and disease
解读健康和疾病中蛋氨酸代谢与甲基转移酶之间的串扰
- 批准号:
10798476 - 财政年份:2022
- 资助金额:
$ 7.95万 - 项目类别:
Tyrosine degradation pathway in mitochondrial dysfunction and aging
线粒体功能障碍和衰老中的酪氨酸降解途径
- 批准号:
10527038 - 财政年份:2022
- 资助金额:
$ 7.95万 - 项目类别:
Studying methionine flux and its role in aging and neurodegeneration
研究蛋氨酸通量及其在衰老和神经退行性疾病中的作用
- 批准号:
10410560 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Studying methionine flux and its role in aging and neurodegeneration
研究蛋氨酸通量及其在衰老和神经退行性疾病中的作用
- 批准号:
10576497 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Studying methionine flux and its role in aging and neurodegeneration
研究蛋氨酸通量及其在衰老和神经退行性疾病中的作用
- 批准号:
10223531 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Studying methionine flux and its role in aging and neurodegeneration
研究蛋氨酸通量及其在衰老和神经退行性疾病中的作用
- 批准号:
10248572 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 7.95万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 7.95万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 7.95万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 7.95万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 7.95万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 7.95万 - 项目类别:
Miscellaneous Programs