Engineering fluid dynamics of cryo-plunging for improved vitrification
用于改善玻璃化的低温浸入的工程流体动力学
基本信息
- 批准号:10707442
- 负责人:
- 金额:$ 18.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiological ProcessCell CommunicationCell physiologyCellsCellular StructuresCellular biologyComputer softwareConvectionCoupledCryoelectron MicroscopyCultured CellsCustomEligibility DeterminationEngineeringFeedbackGeometryGlassGoalsIceImageIn SituInvestigationKnowledgeLiquid substanceMethodsModelingMolecularMolecular StructureMonitorMotionMovementPerformancePositioning AttributePreparationProceduresProcessProtocols documentationReproducibilityResolutionSamplingSeriesSpeedSystemTechniquesTemperatureTestingThickThinnessTimeVisualizationWaterWorkcellular imagingcomputerized toolscryogenicsdesignelectron tomographyexperimental studyimaging modalityimprovedinstrumentmanufacturemetermillisecondnanoscaleopen sourcesensorsimulationsolid statestructural biologytemporal measurementtheoriestime interval
项目摘要
PROJECT SUMMARY ABSTRACT
The long-term goal of this project is to improve cryo-vitrification sample preparation methods for
cryo-electron microscopy (cryo-EM) and tomography (cryo-ET) in terms of their reproducibility
and sample thickness limitations. Cryo-EM is a promising method for observing sub-cellular
assemblies in situ with molecular resolution. However, cryo-EM is hampered by the
irreproducibility and sample thickness limitations imposed by the cryo-vitrification process.
Currently, vitrification is typically achieved by plunging the sample into a cryogenic fluid. This
process of cryo-plunging remains notoriously irreproducible even in structural biology
applications: many cryo-plunging attempts are typically required to get high-quality amorphous
ice. In cell biology applications, the problem is exacerbated: the low thermal diffusivity of cells
puts stringent requirements on the cooling rate in the vitrification process, limiting the thickness
of the sample to the micron scale (<~10 μm), which restricts the application of this technique to
sparsely seeded cells. The cryo-vitrification process will continue to limit the scope and throughput
of cryo-EM until we rigorously understand the fluid dynamics of the sample-cryogen interaction
during cryo-plunging. Once this process is understood, we can engineer it to achieve fast and
reproducible cooling of thicker samples. Optimizing the cryo-vitrification process will address
several critical technical barriers, including: (i) enabling high-throughput sample processing by
increasing the reproducibility of sample preparation, (ii) expanding the scope of cryo-ET by
increasing the thickness of samples eligible for cryo-plunging, and even (iii) achieving time-
resolved nanoscale imaging of biological processes by cooling samples at precise time intervals
after stimulation. The PIs form a collaborative team that is uniquely positioned to address these
technical barriers by using a combination of computational and experimental methods to
understand cryogenic flow and extend the capabilities of cryo-plunging by (1) developing
computational tools to simulate cryo-plunging, (2) systematically exploring the design space and
making testable predictions of system performance, (3) developing and validating a time-resolved
temperature monitoring system, and using it to (4) test theoretical predictions using biological
samples. Upon completion, we will have performed theory-driven experiments evaluating the
most promising cryo-plunging protocols for biological samples. The new protocols will increase
the reproducibility of cryo-plunging and extend this technique to thicker samples, which is
desirable for investigation of biologically relevant cellular assemblies and cell-cell communication.
项目概要 摘要
该项目的长期目标是改进冷冻玻璃化样品制备方法
冷冻电子显微镜 (cryo-EM) 和断层扫描 (cryo-ET) 的再现性
和样品厚度限制。冷冻电镜是观察亚细胞的一种有前途的方法
具有分子分辨率的原位组装。然而,冷冻电镜受到以下因素的阻碍:
冷冻玻璃化过程带来的不可重复性和样品厚度限制。
目前,玻璃化通常是通过将样品浸入低温流体中来实现的。这
即使在结构生物学中,低温浸入的过程仍然是众所周知的不可重复的
应用:通常需要进行许多低温浸入尝试才能获得高质量的非晶态
冰。在细胞生物学应用中,问题更加严重:细胞的低热扩散率
对玻璃化过程中的冷却速度提出了严格的要求,限制了厚度
样品的尺寸达到微米级(<~10 μm),这限制了该技术的应用
稀疏的种子细胞。冷冻玻璃化过程将继续限制范围和产量
直到我们严格了解样品与冷冻剂相互作用的流体动力学
在低温骤降期间。一旦理解了这个过程,我们就可以对其进行设计以实现快速且
较厚样品的可重复冷却。优化冷冻玻璃化过程将解决
几个关键的技术障碍,包括:(i) 通过以下方式实现高通量样品处理:
提高样品制备的可重复性,(ii) 通过以下方式扩大冷冻电子断层扫描的范围:
增加适合低温浸入的样品的厚度,甚至(iii)实现时间-
通过以精确的时间间隔冷却样品来解决生物过程的纳米级成像
刺激后。 PI 组成了一个协作团队,具有独特的优势来解决这些问题
通过使用计算和实验方法相结合的技术障碍
通过 (1) 开发了解低温流动并扩展低温浸入的能力
模拟低温插入的计算工具,(2) 系统地探索设计空间和
对系统性能进行可测试的预测,(3) 开发和验证时间分辨的
温度监测系统,并用它来(4)使用生物检验理论预测
样品。完成后,我们将进行理论驱动的实验来评估
最有前途的生物样品冷冻方法。新协议将增加
冷冻插入的再现性并将该技术扩展到更厚的样品,即
对于研究生物学相关的细胞组装和细胞间通讯是理想的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Prigozhin其他文献
Maxim Prigozhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Prigozhin', 18)}}的其他基金
HPF-X: High-pressure freezing with buffer exchange
HPF-X:带有缓冲液交换的高压冷冻
- 批准号:
10704139 - 财政年份:2022
- 资助金额:
$ 18.77万 - 项目类别:
Engineering fluid dynamics of cryo-plunging for improved vitrification
用于改善玻璃化的低温浸入的工程流体动力学
- 批准号:
10430822 - 财政年份:2022
- 资助金额:
$ 18.77万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 18.77万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 18.77万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 18.77万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 18.77万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 18.77万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 18.77万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 18.77万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 18.77万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 18.77万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 18.77万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




