Massive single cell proteomics for cancer biology
用于癌症生物学的大规模单细胞蛋白质组学
基本信息
- 批准号:10707321
- 负责人:
- 金额:$ 64.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureBenchmarkingBone MarrowCancer BiologyCell SeparationCell physiologyCellsCellular biologyClinicalClinical TreatmentCollaborationsCommunitiesCouplingDataDiagnosisDigestionDisease ProgressionDisease ResistanceEnvironmentEvolutionGenomicsGoalsHematopoietic NeoplasmsHeterogeneityHumanImmuneIndividualIsotope LabelingKnowledgeLabelLaboratoriesLiquid substanceMalignant - descriptorMalignant NeoplasmsMass Spectrum AnalysisMethodsMicrofluidicsMolecularMultiple MyelomaNatureOutcomePathogenesisPathologicPatientsPerformancePeripheral Blood Mononuclear CellPhenotypePlasmaPlasma CellsPopulationPost-Translational Protein ProcessingPreparationProcessProteinsProteomeProteomicsRNAResearchResistanceRunningSamplingSomatic CellSpecimenSystemTechnologyTherapeuticTranscriptUniversitiesWashingtonYeastscancer proteomicscell preparationchimeric antigen receptor T cellscomputational pipelinescost efficientdata acquisitiondensityimprovedindividual variationinnovationinsightmicrochipnanoDropletneoplastic cellnext generationnext generation sequencingpersonalized medicineprotein biomarkersprotein expressionprotein profilingrelapse patientssingle cell technologysingle-cell RNA sequencingsuccesstherapy resistanttranscriptomicstumortumor heterogeneitytumor progressiontumor-immune system interactions
项目摘要
PROJECT SUMMARY/ABSTRACT
Single-cell technologies have become the cornerstone of biomedical and cell biology research. Next-
generation sequencing-based technologies have enabled large-scale characterization of transcript expressions
in single cells from clinical specimens and reveal unexpected cellular heterogeneity related to pathogenesis.
However, many integrative studies have shown only low to moderate correlations between the abundance of
RNA transcripts and their corresponding proteins, the main determinants of cell phenotype. We hypothesize
mass spectrometry-based single-cell proteomics could provide direct insight on the cellular heterogeneity and
inform protein markers related to disease progression and resistance to therapy. The overall objective of this
project is to develop a high throughput single-cell proteomics (scProteomics) platform to enable the routine
analysis of >10,000 single cells at a depth of 2000 proteins in a cost-efficient way. The developed technology
will be disseminated to the research community through close collaboration with a commercial partner. We will
also apply scProteomics to interrogate the heterogeneity of both malignant plasma cell and immune cell
populations from multiple myeloma patients. We will pursue these goals through three specific aims: 1) To
establish an ultra-high throughput single-cell preparation method by coupling an enhanced multiplexing method
with high-density nested nanoPOTS chips and multi-channel droplet dispensing system; We aim to process
>2000 cells in a single microchip, and multiplex-label 36 single cells for a single LC-MS analysis; 2) To
advance the throughput, sensitivity, and quantitation accuracy of LC-MS system. A dual-column nanoLC
system and a FAIMS-based MS acquisition method will be developed to enable the analysis of >860 cells per
day with high quantitation precision; 3) To apply scProteomics to profile ~10,000 plasma and immune cells
from MM patients. We will integrate scProteomics with existing scRNA-seq data to explore tumor
heterogeneity, chimeric antigen receptor T-cells (CAR-T) markers, and the immune microenvironment in
multiple myeloma. This research is highly innovative because the proposed single-cell proteomics platform will
be the first of its kind to routinely and reliably characterize > 10,000 single cells at a throughput comparable to
single-cell transcriptomics. It is also the first scProteomics study of primary liquid tumor cells isolated from the
pathological environment, e.g. bone marrow of MM patients. Statement of Impact: Tumor heterogeneity has
indispensable implications in cancer evolution, tumoral spatial organization, and clinical treatment. Single-cell
proteomics could provide a basis to unravel these complicated relationships and to clarify the mechanisms of
cancer progression and subclone resistance to therapeutic treatments.
项目概要/摘要
单细胞技术已成为生物医学和细胞生物学研究的基石。下一个-
基于世代测序的技术使得转录表达的大规模表征成为可能
在临床标本的单细胞中进行研究,并揭示与发病机制相关的意想不到的细胞异质性。
然而,许多综合研究表明,丰度之间只有低到中度的相关性。
RNA转录本及其相应的蛋白质是细胞表型的主要决定因素。我们假设
基于质谱的单细胞蛋白质组学可以提供对细胞异质性和
告知与疾病进展和治疗耐药性相关的蛋白质标记。本次活动的总体目标
项目是开发一个高通量单细胞蛋白质组学(scProteomics)平台,以实现常规
以经济高效的方式分析 2000 个蛋白质深度的 >10,000 个单细胞。所开发的技术
将通过与商业合作伙伴的密切合作向研究界传播。我们将
还应用 scProteomics 来探究恶性浆细胞和免疫细胞的异质性
来自多发性骨髓瘤患者的人群。我们将通过三个具体目标来实现这些目标:1)
通过耦合增强型多重方法建立超高通量单细胞制备方法
配备高密度嵌套nanoPOTS芯片和多通道液滴分配系统;我们的目标是处理
单个微芯片中包含 >2000 个细胞,并且多重标记 36 个单细胞用于单次 LC-MS 分析; 2) 至
提高 LC-MS 系统的通量、灵敏度和定量精度。双柱 nanoLC
将开发基于 FAIMS 的 MS 采集方法,以便能够分析每个 >860 个细胞
定量精度高的天; 3) 应用 scProteomics 分析约 10,000 个血浆和免疫细胞
来自MM患者。我们将整合 scProteomics 与现有的 scRNA-seq 数据来探索肿瘤
异质性、嵌合抗原受体 T 细胞 (CAR-T) 标记以及免疫微环境
多发性骨髓瘤。这项研究具有高度创新性,因为所提出的单细胞蛋白质组学平台将
成为同类中第一个以可比的吞吐量常规、可靠地表征 > 10,000 个单细胞的公司
单细胞转录组学。这也是第一个对从原代液体肿瘤细胞中分离出来的 scProteomics 研究。
病理环境,例如MM患者的骨髓。影响声明:肿瘤异质性已
对癌症进化、肿瘤空间组织和临床治疗有着不可或缺的影响。单细胞
蛋白质组学可以为阐明这些复杂的关系并阐明其机制提供基础。
癌症进展和亚克隆对治疗的耐药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ljiljana Pasa-Tolic其他文献
Ljiljana Pasa-Tolic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ljiljana Pasa-Tolic', 18)}}的其他基金
Spatially-resolved proteome mapping of senescent cells and their tissue microenvironment at single-cell resolution
单细胞分辨率下衰老细胞及其组织微环境的空间分辨蛋白质组图谱
- 批准号:
10684865 - 财政年份:2022
- 资助金额:
$ 64.75万 - 项目类别:
Spatially-resolved proteome mapping of senescent cells and their tissue microenvironment at single-cell resolution
单细胞分辨率下衰老细胞及其组织微环境的空间分辨蛋白质组图谱
- 批准号:
10552842 - 财政年份:2022
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10687330 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10118771 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10889043 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10256724 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 64.75万 - 项目类别:
Standard Grant














{{item.name}}会员




