Mechanics of mammalian morphogenesis
哺乳动物形态发生的机制
基本信息
- 批准号:10711987
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:ApicalArchitectureAutomobile DrivingBehaviorBiophysicsCell Culture TechniquesCell Differentiation processCell ShapeCellsComplexCuesDevelopmentDevelopmental ProcessDimensionsDisparateEmbryoEnsureEnvironmentEventGeneticGenetic TranscriptionIntestinesInvertebratesInvestigationKnowledgeLearningLicensingMammalsMechanicsModelingMolecularMorphogenesisMovementMusNeural tubePathway interactionsPatternPositioning AttributePrimitive StreaksProcessProliferatingProteinsRegulationResearchShapesSystemTissuesconstrictionflexibilitygastrulationinsightintestinal cryptmodel organismnovelprotein protein interactionspatiotemporalstem cells
项目摘要
Morphogenesis requires careful regulation across multiple dimensions to ensure proper positioning and identity
of differentiating progenitor cells. Ultimately, differentiating cells must coordinate multiple physical parameters -
their environment, position, proliferation and shape - and use these cues to inform their final state and function.
One such cellular shape change broadly utilized to produce complex tissue architectures is apical constriction:
the shrinkage of the apical domain of cells to become wedge-shaped. Apical constriction cumulatively drives
tissue shape changes during various key developmental processes, including gastrulation and branching
morphogenesis. The majority of what we have learned about the physical and regulatory features of apical
constriction come from non-mammalian model organisms, primarily invertebrates. Whether mammalian tissues
use conserved or distinct apical constriction mechanisms and machinery has not been elucidated, nor is it clear
how this conserved biophysical phenomenon can be so flexibly utilized across multiple disparate developmental
transitions. Although apical constriction machinery generally converges on the same conserved proteins, their
spatiotemporal dynamics vary widely across contexts and species. We aim to identify the proteins that direct
mammalian apical constriction, define their spatiotemporal dynamics, and connect the induction of this pathway
to core genetic drivers. We will uncover the general principles that ensure robustness and mechanical integrity
by examining diverse developmental contexts where apical constriction is a fundamental morphogenic feature.
Over the next five years, we will address how cell shape changes initiate and control morphogenesis by
answering the following questions: 1) What force-generating mechanisms drive mammalian apical constriction?
2) What molecular mechanisms regulate cortical reorganization during apical constriction? 3) How do
developmental cell fate transitions license physical aspects of cell shape? To ensure our findings can be broadly
generalized, we will investigate multiple systems where apical constriction is essential, including primary
intestinal cell culture and the early mouse embryo. Specifically, we model apical constriction in intestinal crypt
formation, primitive streak formation and neural tube formation. These systems will allow us to investigate the
dynamics of mammalian apical constriction, localization of key machinery components, protein-protein
interactions, and the transcriptional networks that control the timing of their induction. These studies will produce
deep insight into the mechanisms driving one of the most widely used morphogenetic cell shape changes, identify
novel factors that direct the process, and connect the regulation of cell state to essential physical features.
Together, this knowledge will establish a fundamental understanding of how mammalian tissues coordinate
morphogenesis. The proposed project aligns with my research group's long-term vision to define cellular
mechanisms controlling tissue patterns to understand how architecture regulates cell fates and behaviors.
形态发生需要在多个维度上进行仔细的调节,以确保正确的定位和身份
分化的祖细胞。最终,分化细胞必须协调多个物理参数-
它们的环境、位置、增殖和形状--并利用这些线索来告知它们的最终状态和功能。
广泛用于产生复杂组织结构的一种这样的细胞形状变化是顶端收缩:
细胞顶端区域收缩成楔形。心尖收缩累积驱动
在各种关键的发育过程中,包括原肠胚形成和分支,
形态发生我们所了解的关于根尖细胞的物理和调节特征的大部分内容,
缩窄来自非哺乳动物模式生物,主要是无脊椎动物。哺乳动物组织是否
使用保守的或不同的顶端缢痕机制和机械尚未阐明,也不清楚
这种保守的生物物理现象如何能够在多种不同的发育过程中如此灵活地利用,
过渡。虽然顶端缢缩机制通常集中在相同的保守蛋白质上,但它们的
时空动态因环境和物种而异。我们的目标是鉴定出
哺乳动物顶端收缩,定义其时空动态,并连接该途径的诱导
to core核心genetic遗传drivers驱动.我们将揭示确保坚固性和机械完整性的一般原则
通过研究不同的发展背景,顶端收缩是一个基本的形态特征。
在接下来的五年里,我们将通过以下方式解决细胞形状变化如何启动和控制形态发生的问题:
回答以下问题:1)什么样的力产生机制驱动哺乳动物顶端收缩?
2)什么样的分子机制调节皮层重组在顶端收缩?3)怎么
发育细胞命运的转变许可细胞形状的物理方面?为了确保我们的发现能够广泛地
广义上,我们将研究多个系统,其中顶端收缩是必不可少的,包括原发性
肠细胞培养和小鼠早期胚胎。具体来说,我们在肠隐窝中模拟顶端收缩,
形成、原条形成和神经管形成。这些系统将使我们能够调查
哺乳动物顶端收缩的动力学,关键机械组件的定位,蛋白质-蛋白质
相互作用,以及控制其诱导时间的转录网络。这些研究将产生
深入了解驱动最广泛使用的形态发生细胞形状变化的机制,
指导这一过程的新因素,并将细胞状态的调节与基本的物理特征联系起来。
总之,这些知识将建立对哺乳动物组织如何协调的基本理解
形态发生拟议的项目与我的研究小组定义蜂窝的长期愿景一致
控制组织模式的机制,以了解结构如何调节细胞命运和行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaelyn D. Sumigray其他文献
Kaelyn D. Sumigray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaelyn D. Sumigray', 18)}}的其他基金
Establishment and Maintenance of Apical-Basal Polarity
顶底极性的建立和维持
- 批准号:
8524270 - 财政年份:2013
- 资助金额:
$ 41.88万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant














{{item.name}}会员




