Direct and Quantitative Probing of Desmosome Mechanotransduction
桥粒力转导的直接定量探测
基本信息
- 批准号:10713124
- 负责人:
- 金额:$ 37.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAdherens JunctionAdhesivesAffectAreaCell SeparationCell-Cell AdhesionCellsChemicalsComplexCritical PathwaysDesmosomesDevelopmentDiseaseElementsEpithelial CellsEpitheliumGenetic TranscriptionHealthHeartHumanIntercellular JunctionsIntermediate FilamentsKnowledgeMechanical StressMechanicsMediatingMolecularMorphogenesisPathway interactionsPlayProteinsRegulationResearchRoleSeriesSignal PathwaySignal TransductionSiteSkinStressTissuesWeight-Bearing statecell behaviorcell motilitygain of function mutationloss of functionmechanical loadmechanical signalmechanotransductionmigrationprogramsresponsewound healing
项目摘要
PROJECT SUMMARY
Intercellular adhesive junctions, including desmosomes and adherens junctions, connect epithelial cells within a
tissue to provide mechanical integrity, regulate cell sorting and migration, and control chemical signals that
further instruct cell decisions. In particular, desmosomes resist mechanical stress and respond to mechanical
cues to regulate complex cell behaviors to promote differentiation, facilitate migration and wound healing, and
mediate other functions critical in development and in diseases of many tissues, including the skin and heart.
While significant progress has been made identifying potential load-bearing elements within desmosomes, a
huge knowledge gap exists about their roles in epithelial mechanics and mechanotransduction. Specifically, the
mechanisms of force regulation across the desmosome-intermediate filament linkage are poorly understood.
There is limited direct evidence for when and even whether the molecular components of desmosomes bear
mechanical loads, the first step towards mechanotransduction. More importantly, still unaddressed is whether
specific desmosome components act as mechanosensors that determine the strength and duration of chemical
signaling pathways critical in adapting to mechanical stresses in tissues. Our previous studies showed the
capacity of desmosome-intermediate filament linkage in regulating cell mechanics, a role that has long been
regarded to belong solely to adherens junctions. This suggests the potential for desmosomal components to
participate in force regulation. In this MIRA project, building on these findings and leveraging a newly developed
single cell-cell adhesion interrogation platform, we will examine the important, but less studied, role that
desmosomes play in epithelial mechanics and in mechanotransduction. We will focus on two major research
thrust areas: 1) investigate the role desmosome plays in maintaining the mechanical integrity of epithelial cell-
cell junctions and 2) determine its potential in transducing mechanical cues at the junction in coordination with
mechanosensitive molecules at the adherens junctions and the actin network. Through a series of studies on
epithelial cells with desmosomal components harboring loss- and gain-of-function mutations, we will quantify the
contribution from each desmosomal protein in maintaining epithelial mechanical integrity in stressed conditions.
We will answer the question: How does actin-based contractility affect desmosome regulation of tension within
actin-based adhesive networks? We anticipate providing the first direct observation of desmosome serving as a
mechanotransduction site at the cell-cell junction. The proposed studies will enhance our understanding of how
desmosomes coordinate chemical and transcriptional pathways in response to mechanical tension in the
epithelia, lay the groundwork for similar studies of desmosome mechanosensing in other tissues, and ultimately
provide new knowledge to aid in developing treatments for disorders resulting from interference with these
adhesive junctions and their mechanosensing pathways.
项目总结
细胞间的粘连连接,包括桥粒和粘连连接,将上皮细胞连接到
组织提供机械完整性,调节细胞分类和迁移,并控制化学信号,
进一步指示细胞作出决定。特别是,桥粒抵抗机械应力并对机械应力做出反应。
调节复杂的细胞行为以促进分化、促进迁移和伤口愈合的信号,以及
调节对发育和许多组织的疾病至关重要的其他功能,包括皮肤和心脏。
虽然在识别桥粒中潜在的承重元件方面取得了重大进展,但
关于它们在上皮细胞力学和机械转导中的作用,存在着巨大的知识差距。具体地说,
跨越桥粒-中间细丝连接的力调节机制还知之甚少。
关于桥粒的分子成分何时甚至是否存在的直接证据有限。
机械负荷,机械转导的第一步。更重要的是,仍未解决的问题是
特定的桥粒组件充当机械传感器,决定化学物质的强度和持续时间
信号通路在适应组织中的机械压力方面起关键作用。我们之前的研究表明,
桥粒-中间丝连接在调节细胞力学中的能力,这一作用长期以来一直是
被认为只属于附着点的。这表明桥粒成分有可能
参与武力监管。在这个Mira项目中,在这些发现的基础上,利用新开发的
单细胞-细胞黏附询问平台,我们将考察重要但研究较少的角色,即
桥粒在上皮力学和机械转导中发挥作用。我们将重点进行两项主要研究
主要领域:1)研究桥粒在维持上皮细胞机械完整性中所起的作用
细胞连接处和2)确定其在连接处传递机械信号的潜力
粘着连接和肌动蛋白网络上的机械敏感分子。通过一系列关于
具有桥粒成分的上皮细胞含有功能丧失和功能获得突变,我们将对
每种桥粒蛋白在应激条件下维持上皮机械完整性中的作用。
我们将回答这个问题:基于肌动蛋白的收缩能力如何影响体内张力的桥粒调节
基于肌动蛋白的粘连网络?我们预计将提供第一次直接观察到桥粒作为
细胞-细胞交界处的机械转导部位。拟议的研究将加强我们对如何
桥粒协调化学和转录途径,以响应机械张力
上皮细胞,为在其他组织中类似的桥粒机械传感研究奠定了基础,并最终
提供新的知识,以帮助开发治疗因干扰这些因素而导致的疾病的方法
粘结点及其机械传感途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruiguo Yang其他文献
Ruiguo Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruiguo Yang', 18)}}的其他基金
A Force-controlled Probe Based Platform for Single-Cell Biomolecular Delivery
基于力控探针的单细胞生物分子传递平台
- 批准号:
8780634 - 财政年份:2012
- 资助金额:
$ 37.7万 - 项目类别:
相似海外基金
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
- 批准号:
10752248 - 财政年份:2024
- 资助金额:
$ 37.7万 - 项目类别:
Adherens junction dynamics and function in epithelial tissue morphogenesis
粘附连接动力学和上皮组织形态发生中的功能
- 批准号:
469118 - 财政年份:2022
- 资助金额:
$ 37.7万 - 项目类别:
Operating Grants
Adherens Junction dysfunction in Hidradenitis Suppurativa
化脓性汗腺炎的粘附连接功能障碍
- 批准号:
10701323 - 财政年份:2022
- 资助金额:
$ 37.7万 - 项目类别:
Adherens junction proteins in neuron-glia interactions
神经元-胶质细胞相互作用中的粘附连接蛋白
- 批准号:
9978138 - 财政年份:2019
- 资助金额:
$ 37.7万 - 项目类别:
Elucidation of the function of Focal adherens junction in morphogenesis
阐明焦点粘附连接在形态发生中的功能
- 批准号:
19K16145 - 财政年份:2019
- 资助金额:
$ 37.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying and characterizing the effect of Aip1 on adherens junction remodeling in Drosophila follicular epithelium
鉴定和表征 Aip1 对果蝇滤泡上皮粘附连接重塑的影响
- 批准号:
528450-2018 - 财政年份:2018
- 资助金额:
$ 37.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
- 批准号:
10166863 - 财政年份:2017
- 资助金额:
$ 37.7万 - 项目类别:
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
- 批准号:
9310733 - 财政年份:2017
- 资助金额:
$ 37.7万 - 项目类别:
The function and interaction of focal adhesion and adherens junction in bone mechanosensing and mechanotransduction.
粘着斑和粘附连接在骨力传感和力转导中的功能和相互作用。
- 批准号:
17K17307 - 财政年份:2017
- 资助金额:
$ 37.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
a-catenin and its binding partners in adherens junction assembly and function
α-连环蛋白及其在粘附连接组装和功能中的结合伙伴
- 批准号:
357714 - 财政年份:2016
- 资助金额:
$ 37.7万 - 项目类别:
Operating Grants














{{item.name}}会员




