Investigation of Long-Range Charge Transfer and Excited State Processes in Biochemical Systems
生化系统中长程电荷转移和激发态过程的研究
基本信息
- 批准号:10713085
- 负责人:
- 金额:$ 37.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:BacteriaBiochemicalBiochemical ProcessBiochemistryBioremediationsBiotechnologyBreathingCase StudyCell physiologyChargeComplexComprehensionCytochromesEnvironmentHumanHydroxidesInvestigationIonsLifeLightLipidsLocationMembraneMembrane ProteinsMetalsMicrobeModelingModernizationMolecularMolecular ComputationsMolecular ConformationNaturePathway interactionsPhotonsPoisonPollutionProcessProteinsQuantum MechanicsResearchRespirationShewanellaSiteSystemTechniquesTechnologyTestingVDAC1 geneVacuumabsorptioncomplex biological systemsin vivo imaginginsightmarinemetal oxidemolecular mechanicsmolecular modelingnanosecondoptogeneticsprogramstooltoxic metal
项目摘要
PROJECT SUMMARY/ABSTRACT
In this MIRA program, we aim to gain atomic-level insights into complex biological
systems such as bacterial membrane proteins and light-sensitive proteins with particular
emphasis on their native protein and lipid environments. We will test the impact of such
biochemical environments in two distinct projects.
A wide variety of toxic chemicals, including toxic metal oxides and hydroxides, pollute our
environment, posing an imminent threat to human life. One can leverage the unique
respiration mechanism in marine microbes like Shewanella to revolutionize
bioremediation and wastewater treatment technology. Molecular modeling and
computations will provide an atomic-scale comprehension of the mechanism that will
augment macroscale experimental observables. In the first project, we will model the
outer membrane cytochrome-porin complex of Shewanella oneidensis in its native
environment and obtain molecular insights into the charge-transfer network employed in
its respiration.
Electronically excited-state processes are ubiquitous in nature and biotechnology. For
example, blue-light-sensitive proteins are used in the optogenetic control of cellular
processes. Fluorescent proteins with emissions spanning the entire visible region are
often utilized for in vivo imaging. In these applications, subtle structural changes in an
electronically excited molecule induce pronounced conformational changes in the nearby
protein environment or further from its location (allostery). Therefore, the biochemical
environment relays the information at the photon-absorption site to another site. Most
conformational changes occur well beyond a few nanoseconds, making them
inaccessible to modern multi-scale quantum mechanics/molecular mechanics (QM/MM)
techniques. Therefore, in the second project, we will build a tool to model excited states
of biomolecules using force field parameters and then validate those parameters using a
few case studies with fluorescent proteins. Furthermore, we will use those parameters to
decipher photoinduced allosteric pathways in blue-light-sensitive proteins.
项目总结/摘要
在这个MIRA计划中,我们的目标是获得对复杂生物学的原子级见解。
系统如细菌膜蛋白和光敏蛋白,
强调其天然蛋白质和脂质环境。我们将测试此类影响
生化环境中的两个不同的项目。
各种各样的有毒化学品,包括有毒的金属氧化物和氢氧化物,
环境,对人类生命构成迫在眉睫的威胁。人们可以利用独特的
希瓦氏菌等海洋微生物的呼吸机制,
生物修复和废水处理技术。分子建模和
计算将提供一个原子尺度的理解机制,
增加宏观实验观测量。在第一个项目中,我们将对
奥奈希瓦氏菌外膜细胞色素-孔蛋白复合体
环境,并获得分子的见解,电荷转移网络中采用的
它的呼吸
电子激发态过程在自然界和生物技术中无处不在。为
例如,蓝光敏感蛋白用于细胞的光遗传学控制,
流程.荧光蛋白的发射跨越整个可见光区,
通常用于体内成像。在这些应用中,
电子激发的分子在附近引起明显的构象变化,
蛋白质环境或远离其位置(变构)。因此,生物化学
环境将光子吸收位点处的信息中继到另一位点。最
构象变化发生的时间远远超过几纳秒,
现代多尺度量子力学/分子力学(QM/MM)无法实现
技术.因此,在第二个项目中,我们将建立一个工具来模拟激发态
的生物分子使用力场参数,然后验证这些参数使用
荧光蛋白的一些案例研究。此外,我们将使用这些参数来
破译蓝光敏感蛋白中的光诱导变构途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atanu Acharya其他文献
Atanu Acharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 37.26万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant