Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
基本信息
- 批准号:10713637
- 负责人:
- 金额:$ 28.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer’s disease biomarkerAmericanAmyloid beta-42AreaArtificial IntelligenceAtrophicAutopsyAwardBiopsyBrainBrain InjuriesCharacteristicsClassificationClinicalCognitiveComputing MethodologiesDataData SetDementiaDevelopmentDiagnosisDiseaseEarly DiagnosisEarly identificationEarly treatmentEducational CurriculumFutureGrantImageImpaired cognitionIntelligenceKnowledgeLearningMRI ScansMachine LearningMagnetic Resonance ImagingMammographic screeningMeasurementMedicalModalityModelingNerve DegenerationOutcomeParentsPositron-Emission TomographyProcessResearchResearch MethodologyResearch PersonnelResourcesSamplingScanningSpinal PunctureSpinal TapTechniquesTimeTrainingTranslatingTriageUnited States National Institutes of HealthUpdateWorkbiomarker developmentbrain magnetic resonance imagingbreast imagingcancer imagingcognitive functiondeep learningdeep learning modeldesignearly detection biomarkersempowermentexperienceimaging biomarkerimaging modalityimprovedinnovationlearning strategymalignant breast neoplasmmild cognitive impairmentmultidisciplinaryneuroimagingneuroimaging markerneuron lossnon-invasive imagingoutcome predictionpredictive modelingpreventprogramspublic health relevanceradiomicsresearch studyrisk predictionscreeningtargeted treatmenttau Proteins
项目摘要
Adapt innovative deep learning methods from breast cancer to Alzheimer’s disease
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with the number of affected Americans
expected to reach 13.4 million by the year 2050. Early detection and treatment of AD is critical to prevent non-
reversible and fatal brain damage. Thus, development of non-invasive markers from neuroimaging modalities
(e.g., brain MRI) is of great significance for screening and early detection of AD. In the PI’s active R01 award
(1R01EB032896-01), the research focuses on developing a new line of research strategy and technical
innovation to analyze breast cancer images for diagnosis, risk prediction, and triage. The core strategy is to
incorporate medical/clinical intelligence into data-driven deep learning modeling. This technical innovation is
however not limited to breast cancer, but can be adapted to other diseases, such as AD, as well. Thus, in this
Supplement proposal, we propose to develop an AD focus of our active R01 by adapting the new technical
innovation in breast cancer into cognitive outcome prediction for discovering early and no-invasive imaging
biomarkers for AD. The main task of this Supplement study is to build deep learning models using brain MRIs
as input for cognitive outcome prediction, which is formulated as a typical classification problem among three
cognitive classes: Normal Control vs. Mild Cognitive Impairment vs. AD. We proposed two specific aims: 1)
Deep curriculum learning informed by samples’ characteristic knowledge for cognitive outcome prediction and
2) Learning knowledge from longitudinal brain MRIs to improve prediction of AD. We will mainly use the
publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. We have assembled a multi-
disciplinary team with complementary expertise. The proposed study will provide an avenue to translate some
of the innovative techniques developed in other domains to advance non-invasive imaging biomarker
development for AD. This project will also provide an opportunity for the PI’s team to get involved and
contribute to AD-related new research.
适应从乳腺癌到阿尔茨海默病的创新深度学习方法
摘要
阿尔茨海默病(AD)是痴呆症最常见的形式,受影响的美国人
预计到2050年将达到1340万。早期发现和治疗AD是预防非
可逆的致命的脑损伤。因此,来自神经成像方式的非侵入性标志物的发展
(如脑MRI)对AD的筛查和早期发现具有重要意义。在PI的Active R01奖中
(1R01EB032896-01),研究重点是开发一条新的研究战略和技术路线
创新地分析乳腺癌图像以进行诊断、风险预测和分类。核心战略是
将医疗/临床智能融入数据驱动的深度学习建模。这项技术创新是
但不仅限于乳腺癌,还可以适应其他疾病,如阿尔茨海默病。因此,在这方面
补充建议,我们建议通过适应新的技术来开发我们的Active R01的AD重点
乳腺癌认知结果预测的创新,以发现早期和非侵入性成像
AD的生物标志物。这项补充研究的主要任务是利用大脑核磁共振成像建立深度学习模型
作为认知结果预测的输入,这是三个典型的分类问题中的一个
认知类:正常对照与轻度认知障碍与AD。我们提出了两个具体目标:1)
基于样本特征知识的深度课程学习,用于认知结果预测
2)从纵向脑MRI中学习知识,以提高AD的预测能力。我们将主要使用
公开可用的阿尔茨海默病神经成像倡议(ADNI)数据集。我们已经组装了一个多-
具有互补专业知识的纪律团队。拟议的研究将提供一种途径来翻译一些
在其他领域开发的创新技术以推进非侵入性成像生物标记物
AD的开发。该项目还将为PI的团队提供一个参与和
为AD相关的新研究做出贡献。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A self-training teacher-student model with an automatic label grader for abdominal skeletal muscle segmentation.
带有自动标签分级器的自训练师生模型,用于腹部骨骼肌分割。
- DOI:10.1016/j.artmed.2022.102366
- 发表时间:2022
- 期刊:
- 影响因子:7.5
- 作者:Hao,Degan;Ahsan,Maaz;Salim,Tariq;Duarte-Rojo,Andres;Esmaeel,Dadashzadeh;Zhang,Yudong;Arefan,Dooman;Wu,Shandong
- 通讯作者:Wu,Shandong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shandong Wu其他文献
Shandong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shandong Wu', 18)}}的其他基金
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10659235 - 财政年份:2021
- 资助金额:
$ 28.38万 - 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10435785 - 财政年份:2021
- 资助金额:
$ 28.38万 - 项目类别:
Deep interpretation of mammographic images in breast cancer screening
乳腺癌筛查中乳腺X线摄影图像的深入解读
- 批准号:
10165659 - 财政年份:2018
- 资助金额:
$ 28.38万 - 项目类别:
Quantitative assessment of breast MRIs for breast cancer risk prediction
乳腺 MRI 定量评估用于乳腺癌风险预测
- 批准号:
9274819 - 财政年份:2015
- 资助金额:
$ 28.38万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.38万 - 项目类别:
Research Grant