Generalizable Nanosensors for Probing Highly Specific Interactions of Protein Kinases
用于探测蛋白激酶高度特异性相互作用的通用纳米传感器
基本信息
- 批准号:10719635
- 负责人:
- 金额:$ 42.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-23 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAlgorithmic AnalysisApplications GrantsBasic ScienceBindingBiological AssayBiosensorBiotechnologyCaseinsCatalytic DomainCell physiologyCompetitive BindingComplexCyclic AMP-Dependent Protein KinasesDependenceDetectionDevelopmentDevicesDiagnosticDrug TargetingElectrophysiology (science)ElementsEngineeringEnzymatic BiochemistryEnzymesEpidermal Growth Factor ReceptorEventFDA approvedFaceGenerationsGrainGrowth FactorHealthcareHematologic NeoplasmsHumanHyperactivityIntegral Membrane ProteinKineticsLabelLeadLigandsMalignant NeoplasmsMeasurementMeasuresMediatingMedicalMethodsMicroelectrodesModalityModelingMoloney Leukemia VirusNanostructuresNoiseOutcomePeptidesPerformancePhasePhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPost-Translational Protein ProcessingProtein DynamicsProtein EngineeringProtein IsoformsProtein KinaseProtein Kinase InteractionProtein-Serine-Threonine KinasesProteinsReceptor Protein-Tyrosine KinasesReporterReportingResolutionSamplingSerumSignal PathwaySignal TransductionSolid NeoplasmSpecificitySubstrate InteractionTailTechnologyTimeantibody mimeticscasein kinase IIcofactorcomplex datadesigndrug discoveryinhibitorinnovationinorganic phosphateleukemiamembermolecular diagnosticsmolecular dynamicsnanoporenanosensorsnew technologyoverexpressionpolypeptidepreservationprognosticprotein protein interactionresponsescreeningsensorsingle moleculesmall moleculesmall molecule inhibitorsynthetic biologytool
项目摘要
Project Summary
Developing novel technologies for identifying and quantifying transient protein-protein interactions is critical in
basic research and medical biotechnology. Protein kinases represent a focal group among strategic drug
targets for treating numerous hematological malignancies and solid tumors. Yet, creating high-resolution
sensors to detect, quantify, and analyze the plasticity of diverse kinome members in a broad dynamic range of
interactions remains difficult. This challenge is exacerbated because the kinase superfamily members vary
drastically in their complexity. To address this long-standing technological shortcoming, we will formulate,
develop, and validate a new class of generalizable and highly specific nanopore sensors (nanosensors) for
kinase analytics. The key innovating aspect of this design is fusing a generic protein recognition ligand with a
transmembrane protein nanopore. This approach will employ a robust nanostructure made of a single
polypeptide entity with no requirement for an additional tail or other exogenous tags. The binding interface of
the protein recognition ligand is interchangeable to accommodate the required specificity for a targeted kinase,
whereas the nanopore facilitates the generation of a reporting electrical signal. A protein kinase analyte in
solution produces a unique electrical signature that varies with its identity and quantity. The reporting signal is
mediated by the ligand-kinase assembly at the nanopore tip. In these studies, kinase recognition events will be
discriminated at single-molecule precision without the necessity of using complex data analysis algorithms.
This engineering strategy substantially broadens the spectrum of applications of these nanosensors to various
kinases and their interactions. Our preliminary studies prove the power of this approach by creating a single-
molecule nanosensor platform that probes and quantifies structurally and functionally diverse proteins beyond
the fundamental limit of sensing inside the nanopore. In addition, such a tactic will enable the detection of
competing binding interactions of kinase isoforms against the same recognition ligand. These generalizable
nanosensors permit integration into scalable devices, representing versatile elements for small-molecule
inhibitor screening and drug discovery pipelines. Further project developments will be aimed at maintaining a
high performance of these nanosensors in a complex biofluid. Therefore, they can be utilized using realistic
samples, having prospects in molecular diagnostics. The expected immediate outcomes of this project will be
the following: (i) the development of high-affinity nanosensors for ultrasensitive analysis of receptor tyrosine
kinases (RTKs); (ii) the creation of genetically-encoded nanosensors for probing serine-threonine kinases
(STKs); (iii) the detection and analysis of kinases in multiplexed settings and biofluids. These studies will
impact healthcare by providing tools and a fundamental framework in biosensor technology, synthetic biology,
and single-molecule enzymology.
项目摘要
开发识别和量化瞬时蛋白质-蛋白质相互作用的新技术在
基础研究和医学生物技术。蛋白激酶是战略药物中的一个焦点
治疗多种血液系统恶性肿瘤和实体瘤的靶点。然而,创建高分辨率
传感器,用于检测、量化和分析广泛动态范围内的不同亲属组成员的可塑性
互动仍然很困难。这一挑战因激酶超家族成员的不同而加剧
它们的复杂性有很大提高。为了解决这一长期存在的技术缺陷,我们将制定,
开发和验证一种新的可推广和高度特异的纳米孔传感器(纳米传感器),用于
激活剂分析。这一设计的关键创新方面是将通用蛋白质识别配体与
跨膜蛋白纳米孔。这种方法将使用由单一的
多肽实体,不需要额外的尾巴或其他外源标签。的绑定接口
蛋白质识别配体可互换以适应靶向激酶所需的特异性,
而纳米孔有助于产生报告电信号。一种蛋白激酶分析物
解决方案产生一个独特的电子签名,它随着其身份和数量的不同而变化。报告信号是
由纳米孔尖端的配体-激酶组装介导。在这些研究中,激酶识别事件将是
以单分子精度进行识别,无需使用复杂的数据分析算法。
这一工程策略大大拓宽了这些纳米传感器的应用范围,使其适用于各种
激酶及其相互作用。我们的初步研究证明了这种方法的力量,它创造了一个单一的-
分子纳米传感器平台,探测和量化结构和功能上不同的蛋白质
纳米孔内部传感的基本极限。此外,这种策略将使检测到
与同一识别配体竞争结合的激酶亚型的相互作用。这些是可概括的
纳米传感器允许集成到可扩展的设备中,代表了小分子的多种元素
抑制剂筛选和药物发现流水线。进一步的项目开发将旨在保持一个
这些纳米传感器在复杂的生物流体中的高性能。因此,可以利用它们来使用现实
样品,在分子诊断学中有应用前景。该项目的预期直接结果将是
用于受体酪氨酸超灵敏分析的高亲和力纳米传感器的发展
激酶(RTK);(Ii)用于探测丝氨酸-苏氨酸激酶的基因编码纳米传感器的建立
(3)检测和分析多路传输环境和生物体液中的激活酶。这些研究将
通过提供生物传感器技术、合成生物学、
和单分子酶学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LIVIU MOVILEANU其他文献
LIVIU MOVILEANU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LIVIU MOVILEANU', 18)}}的其他基金
Development of Modular Synthetic Sensors for Protein Biomarker Detection
用于蛋白质生物标志物检测的模块化合成传感器的开发
- 批准号:
10659642 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
10461887 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
7939932 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8136461 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
10227053 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8537210 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8325070 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8760824 - 财政年份:2009
- 资助金额:
$ 42.22万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 42.22万 - 项目类别:
Continuing Grant