Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
基本信息
- 批准号:10717563
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAdverse effectsAlzheimer&aposs DiseaseArtificial IntelligenceBilateralBrainClassificationClinicalComplicationConsumptionDataData CollectionDeep Brain StimulationDystoniaElectrodesEngineeringEnsureEssential TremorFinancial HardshipFrequenciesFunctional Magnetic Resonance ImagingGoalsHealthHourImplantImplanted ElectrodesImprove AccessLocationMagnetic Resonance ImagingMajor Depressive DisorderManualsMapsMethodsModelingNeurologistNeurosurgeonOperative Surgical ProceduresOutcomeParkinson DiseasePathologicPatient-Focused OutcomesPatientsPhysiciansPhysiologic pulsePilot ProjectsProtocols documentationPublishingQualifyingQuality of lifeReportingResearchSTN stimulationSamplingSignal TransductionSystemTestingTherapeuticTimeTissuesTrainingUniversitiesVisitWidthbrain volumeclinical carecomparative efficacydata acquisitiondeep learningdeep learning modelenergy efficiencyfeature extractionimprovedinterestmild cognitive impairmentmultidisciplinarynovelpredictive modelingprogramsradiologistrapid techniqueresponseside effectstandard of caresuccesstreatment centervalidation studiesvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
Successful treatment of Parkinson's disease (PD) using deep brain stimulation (DBS) therapy requires an
optimal setting of stimulation parameters to correct brain function anomalies. The commonly employed DBS
1.0 electrodes have only four contact locations (with no stimulation directionality) that are used to electric
pulses to a target volume of the brain. DBS 1.0 electrodes require the optimization of four stimulation
parameters: signal frequency, voltage, pulse width, and contact location. In current standard-of-care
optimization protocol, the DBS parameters are adjusted (via trial and error) until the physician determines an
optimal set of parameters. This empirical optimization protocol requires numerous clinical visits (~6 weeks
interval) that substantially increases the time to optimization (TTO) per patient (~1 year), financial burden,
and ultimately limits the number of patients that can have access to DBS therapy. Even though there are more
effective electrodes, DBS 1.0 electrodes are mostly used by clinicians because their smaller parameter space
pose less difficulty during manual clinical optimization. However, DBS 1.0 electrodes cannot be directed to
stimulate a smaller volume of tissue, which can lead to extraneous stimulations that can reduce patient clinical
benefits and increase side effects. By contrast, the newer DBS electrodes (dubbed DBS 2.0) have a greater
number of contact locations and can be programmed to stimulate a smaller volume of tissue at multiple levels
and directions. Several published reports have shown that DBS 2.0 electrodes (compared to DBS 1.0) are more
energy-efficient and improve patient outcomes with lesser side-effects and a wider therapeutic window.
However, the expanded DBS 2.0 parameter space has made empirical programming of the electrodes difficult
as the TTO per patient is beyond acceptable clinical timeframes. This increased difficulty has hindered
adoption of DBS 2.0 electrodes by clinicians. To significantly shorten and simplify DBS 2.0 parameter
optimization—thus enabling its wider adoption for more precise therapy—a uniquely qualified multi-
disciplinary team of magnetic resonance imaging (MRI) physicists, artificial intelligence (AI) engineers, and
clinicians from GE Research and the University Health Network propose to: 1) develop a semi-automated
functional MRI (fMRI) and deep learning (DL)-based system for rapid optimization of DBS 2.0 parameters; 2)
demonstrate its clinical benefit in the treatment of PD patients using bilateral stimulation of the sub-thalamic
nucleus with DBS 2.0 electrodes in a pilot study. Success of this program will decrease the TTO per patient for
PD patients with DBS 2.0 implants to ~1 hour, and will improve patient throughput and outcomes in the
treatment of PD. The proposed fMRI-DL-based optimization method may also improve access by making it
possible for non-expert centers (without highly specialized clinicians) to carry out stimulation parameters
optimization in patients after the electrode insertion surgery have been completed in expert centers.
项目摘要/摘要
使用脑深部电刺激(DBS)疗法成功治疗帕金森病(PD)需要
刺激参数的最佳设置以校正脑功能异常。常用的DBS
1.0电极仅具有四个接触位置(没有刺激方向性),
脉冲到大脑的目标体积。DBS 1.0电极需要优化四种刺激
参数:信号频率、电压、脉冲宽度和触点位置。在当前的标准治疗中
在优化方案中,调整DBS参数(通过试错法),直到医生确定
最佳参数集。该经验优化方案需要多次临床访视(约6周
间隔),这大大增加了每例患者的优化时间(TTO)(约1年),经济负担,
并最终限制了能够获得DBS治疗的患者的数量。即使有更多的
有效电极,DBS 1.0电极主要由临床医生使用,因为其较小的参数空间
在手动临床优化过程中造成的困难较小。但是,DBS 1.0电极不能直接用于
刺激较小体积的组织,这可能导致可能降低患者临床
增加副作用。相比之下,较新的DBS电极(称为DBS 2.0)具有更大的
接触位置的数量,并且可以编程以在多个水平刺激较小体积的组织
和方向。几份已发表的报告表明,DBS 2.0电极(与DBS 1.0相比)
节能和改善患者的结果,副作用更少,治疗窗口更宽。
然而,扩展的DBS 2.0参数空间使得电极的经验编程变得困难
因为每例患者的TTO超出了可接受的临床时间范围。这种增加的难度阻碍了
临床医生采用DBS 2.0电极。显著缩短和简化DBS 2.0参数
优化-从而使其更广泛地采用更精确的治疗-一个独特的合格的多,
由磁共振成像(MRI)物理学家、人工智能(AI)工程师和
来自GE研究和大学健康网络的临床医生建议:1)开发一种半自动化的
基于功能性MRI(fMRI)和深度学习(DL)的系统,用于快速优化DBS 2.0参数; 2)
证明其在使用丘脑下双侧刺激治疗PD患者中的临床受益
DBS 2.0电极在一项初步研究中。该计划的成功将减少每例患者的TTO,
使用DBS 2.0植入的PD患者可缩短至约1小时,并将改善患者的吞吐量和结局。
治疗PD。所提出的基于fMRI-DL的优化方法还可以通过使其
非专家中心(没有高度专业的临床医生)可以执行刺激参数
电极插入手术后的患者优化已在专家中心完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Afis Ajala其他文献
Afis Ajala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
-- - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship