Type 2 diabetes risk variant effects on mitochondrial (patho)physiology
2 型糖尿病风险变异对线粒体(病理)生理学的影响
基本信息
- 批准号:10717519
- 负责人:
- 金额:$ 78.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBeta CellBindingBioenergeticsBiological AssayCell SurvivalCell physiologyCellsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCompensationComplexDNA BindingDNA SequenceDefectDevelopmentDiseaseEtiologyFailureFunctional disorderGene Expression ProfileGenesGenetic DiseasesGenetic RiskGenetic TranscriptionGenomic DNAGenomicsHealthHealth systemHistone AcetylationHumanImmunodeficient MouseImpairmentIn VitroInsulinInsulin ResistanceIslet CellIslets of LangerhansIslets of Langerhans TransplantationKnockout MiceKnowledgeLinkMedicalMetabolicMitochondriaModificationMolecularNon-Insulin-Dependent Diabetes MellitusPancreasPatientsPeripheralPersonsPhenotypePhysiologyPrediabetes syndromePublic HealthQuantitative Trait LociRegulatory ElementReporter GenesReportingSingle Nucleotide PolymorphismTechniquesTestingUntranslated RNAValidationVariantWorkdiet-induced obesitygenome editinggenome wide association studygenomic locusglycemic controlimpaired glucose tolerancein vivoinnovationisletmitochondrial dysfunctionmitochondrial metabolismmouse modelnew therapeutic targetphysiologic modelpre-clinicalpreventrisk varianttooltraittranscription factor
项目摘要
PROJECT SUMMARY / ABSTRACT
Type 2 diabetes (T2D) results when pancreatic islet β-cells fail to secrete sufficient insulin to meet peripheral
insulin demand. Mitochondrial bioenergetics is central to the (patho)physiology of β-cell (dys)function, and recent
work suggests that β-cell mitochondrial dysfunction precedes the development of T2D in β-cells from donors
with impaired glucose tolerance (or pre-diabetes). Mitochondrial defects have been reported in the β-cells of
human T2D patients, but the etiology of mitochondrial dysfunction in T2D is unknown. Such mechanistic
knowledge is necessary to guide strategies to prevent or treat islet failure and T2D. Importantly, genome-wide
association studies (GWAS) link single nucleotide polymorphisms (SNPs) in >500 genetic loci to T2D and islet
dysfunction-related metabolic traits. The majority of these SNPs are non-coding and overlap regulatory elements
(REs) with broad transcriptional implications for affected cells. In this study, we combine our expertise in the
genomics of T2D, (epi)genomic modification, and mitochondrial function in β-cells to bridge the gap from genomic
association to mechanistic understanding. We hypothesize that non-coding T2D SNPs cause β-cell dysfunction
by altering RE use or activity, thereby changing expression of effector genes that directly impair mitochondrial
health. To test this, we propose to use sophisticated (epi)genomic editing tools in human islets and β-cell specific
mouse models for physiological relevance and validation in two complementary Aims. In Aim 1, we will test RE–
effector gene links in human islets using CRISPR-QTL. In parallel, we will assess T2D risk allele effects on RE
chromatin accessibility, activity, transcription factor binding, and β-cell expression of putative mitochondrial T2D
effector genes using complementary in vivo (single cell chromatin accessibility, histone acetylation, and
expression quantitative trait locus analysis of primary human islets) and in vitro (reporter gene, DNA-binding
assay) approaches. Finally, we will determine the consequences of effector gene perturbation on mitochondrial
phenotypes, β-cell viability, and insulin content and secretion in human islets and EndoC-βH3 cells. In Aim 2,
we harness β-cell-specific knockout mouse models to assign function to two high-priority mitochondrial T2D
effector genes in glycemic control, β-cell mass/function, and mitochondrial metabolism. Further, we will address
the importance of these mitochondrial T2D effector genes for β-cell compensation to peripheral insulin resistance
following diet-induced obesity. Finally, we will use (epi)genomic editing tools in human islets to determine if
mitochondrial T2D effector genes impair β-cell function and glycemic control in ex vivo assays as well as after
islet transplantation into immunodeficient mice. Completion of this study will generate new variant-to-function
connections that assign molecular and cellular functions to T2D risk alleles, identify novel therapeutic targets,
and provide important knowledge to guide subsequent strategies to prevent or treat β-cell failure and T2D.
PROJECT SUMMARY / ABSTRACT
Type 2 diabetes (T2D) results when pancreatic islet β-cells fail to secrete sufficient insulin to meet peripheral
insulin demand. Mitochondrial bioenergetics is central to the (patho)physiology of β-cell (dys)function, and recent
work suggests that β-cell mitochondrial dysfunction precedes the development of T2D in β-cells from donors
with impaired glucose tolerance (or pre-diabetes). Mitochondrial defects have been reported in the β-cells of
human T2D patients, but the etiology of mitochondrial dysfunction in T2D is unknown. Such mechanistic
knowledge is necessary to guide strategies to prevent or treat islet failure and T2D. Importantly, genome-wide
association studies (GWAS) link single nucleotide polymorphisms (SNPs) in >500 genetic loci to T2D and islet
dysfunction-related metabolic traits. The majority of these SNPs are non-coding and overlap regulatory elements
(REs) with broad transcriptional implications for affected cells. In this study, we combine our expertise in the
genomics of T2D, (epi)genomic modification, and mitochondrial function in β-cells to bridge the gap from genomic
association to mechanistic understanding. We hypothesize that non-coding T2D SNPs cause β-cell dysfunction
by altering RE use or activity, thereby changing expression of effector genes that directly impair mitochondrial
health. To test this, we propose to use sophisticated (epi)genomic editing tools in human islets and β-cell specific
mouse models for physiological relevance and validation in two complementary Aims. In Aim 1, we will test RE–
effector gene links in human islets using CRISPR-QTL. In parallel, we will assess T2D risk allele effects on RE
chromatin accessibility, activity, transcription factor binding, and β-cell expression of putative mitochondrial T2D
effector genes using complementary in vivo (single cell chromatin accessibility, histone acetylation, and
expression quantitative trait locus analysis of primary human islets) and in vitro (reporter gene, DNA-binding
assay) approaches. Finally, we will determine the consequences of effector gene perturbation on mitochondrial
phenotypes, β-cell viability, and insulin content and secretion in human islets and EndoC-βH3 cells. In Aim 2,
we harness β-cell-specific knockout mouse models to assign function to two high-priority mitochondrial T2D
effector genes in glycemic control, β-cell mass/function, and mitochondrial metabolism. Further, we will address
the importance of these mitochondrial T2D effector genes for β-cell compensation to peripheral insulin resistance
following diet-induced obesity. Finally, we will use (epi)genomic editing tools in human islets to determine if
mitochondrial T2D effector genes impair β-cell function and glycemic control in ex vivo assays as well as after
islet transplantation into immunodeficient mice. Completion of this study will generate new variant-to-function
connections that assign molecular and cellular functions to T2D risk alleles, identify novel therapeutic targets,
and provide important knowledge to guide subsequent strategies to prevent or treat β-cell failure and T2D.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Soleimanpour其他文献
Scott Soleimanpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Soleimanpour', 18)}}的其他基金
Control of beta cell identity by the mitochondrial life cycle
通过线粒体生命周期控制 β 细胞身份
- 批准号:
10619610 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Control of beta cell identity by the mitochondrial life cycle
通过线粒体生命周期控制 β 细胞身份
- 批准号:
9890737 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Control of beta cell identity by the mitochondrial life cycle
通过线粒体生命周期控制 β 细胞身份
- 批准号:
10454761 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Mediators of mitophagy in the regulation of beta cell function
线粒体自噬调节β细胞功能的介质
- 批准号:
9237051 - 财政年份:2016
- 资助金额:
$ 78.88万 - 项目类别:
Mediators of mitophagy in the regulation of beta cell function
线粒体自噬调节β细胞功能的介质
- 批准号:
9761533 - 财政年份:2016
- 资助金额:
$ 78.88万 - 项目类别:
Endosomal regulation of GLP-1 receptor function in beta cells by Clec16a
Clec16a 对 β 细胞中 GLP-1 受体功能的内体调节
- 批准号:
9086362 - 财政年份:2015
- 资助金额:
$ 78.88万 - 项目类别:
Endosomal regulation of GLP-1 receptor function in beta cells by Clec16a
Clec16a 对 β 细胞中 GLP-1 受体功能的内体调节
- 批准号:
8949507 - 财政年份:2015
- 资助金额:
$ 78.88万 - 项目类别:
相似海外基金
Deep Learning prediction of pancreatic Beta cell transcription factor binding site using Cap analysis gene expression sequencing data
使用 Cap 分析基因表达测序数据深度学习预测胰腺 Beta 细胞转录因子结合位点
- 批准号:
558422-2020 - 财政年份:2020
- 资助金额:
$ 78.88万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of the Role of Post-Transcriptional Regulation by the Poly(C) Binding Proteins in Pancreatic Beta Cell Homeostasis
聚 (C) 结合蛋白转录后调节在胰腺 β 细胞稳态中的作用分析
- 批准号:
10213016 - 财政年份:2019
- 资助金额:
$ 78.88万 - 项目类别:
Analysis of the Role of Post-Transcriptional Regulation by the Poly(C) Binding Proteins in Pancreatic Beta Cell Homeostasis
聚 (C) 结合蛋白转录后调节在胰腺 β 细胞稳态中的作用分析
- 批准号:
10020171 - 财政年份:2019
- 资助金额:
$ 78.88万 - 项目类别:
The role of PDZ binding kinase in beta cell proliferation during pregnancy
PDZ结合激酶在妊娠期β细胞增殖中的作用
- 批准号:
17K09846 - 财政年份:2017
- 资助金额:
$ 78.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Role of PHIP (Pleckstrin Homology Domain Binding Interacting Protein)in Beta-cell Function
研究 PHIP(Pleckstrin 同源结构域结合相互作用蛋白)在 β 细胞功能中的作用
- 批准号:
225398 - 财政年份:2011
- 资助金额:
$ 78.88万 - 项目类别:
Studentship Programs
IGF binding protein-3 in beta cell apoptosis
IGF 结合蛋白 3 在 β 细胞凋亡中的作用
- 批准号:
6773831 - 财政年份:2001
- 资助金额:
$ 78.88万 - 项目类别:
IGF binding protein-3 in beta cell apoptosis
IGF 结合蛋白 3 在 β 细胞凋亡中的作用
- 批准号:
6605903 - 财政年份:2001
- 资助金额:
$ 78.88万 - 项目类别:
IGF binding protein-3 in beta cell apoptosis
IGF 结合蛋白 3 在 β 细胞凋亡中的作用
- 批准号:
6891873 - 财政年份:2001
- 资助金额:
$ 78.88万 - 项目类别: