The dissection of non-canonical cis-regulatory elements downstream of beta-globin locus in the fetal hemoglobin gene regulation
胎儿血红蛋白基因调控中β-珠蛋白位点下游非典型顺式调控元件的剖析
基本信息
- 批准号:10718028
- 负责人:
- 金额:$ 46.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultBindingBinding SitesCRISPR/Cas technologyCategoriesCell LineCellsChromatinClassificationCodeDataDevelopmentDimerizationDiseaseDissectionEEF1A2 geneEP300 geneEnhancersEnvironmentErythrocytesErythroidErythroid CellsErythropoiesisFetal HemoglobinGATA1 geneGene ClusterGene ExpressionGene Expression RegulationGenerationsGenesGeneticGenetic DiseasesGenomeGenomic SegmentGenomicsGlobinHemoglobinHemoglobin F DiseaseHemoglobinopathiesHistonesHumanHuman GenomeLocus Control RegionMediatingMolecular TargetPathogenicityPlayPoint MutationPopulationProteinsPublishingRegulationRegulatory ElementResearchRoleSickle Cell AnemiaSiteStructureSystemTechnologyThalassemiaTranscriptional RegulationTwin Multiple BirthUntranslated RNAUp-RegulationUpdateWorkbeta Globinbeta Thalassemiaepigenome editingepigenomic profilingexperimental studyfetalgamma Globingene therapygenome editinggenomic locusmutantnovelnovel strategiesprecise genome editingprime editingprogenitorpromoterreduce symptomstargeted treatmenttherapy developmenttooltranscription factor
项目摘要
Project Summary/Abstract
In the human genome, only 10% are coding regions responsible for protein coding. Particularly, the non-
coding regions that directly regulate the gene expression – cis-regulatory elements (CREs) – are of great
importance in normal development and pathogenic disease development. CREs are generally bound by
transcriptional factors (TFs). CREs play an important role in the globin switch during fetal to adult erythropoiesis.
CREs act as enhancers (LCR region), repressors (BCL11A binding site in γ globin promoter), or insulators (3'HS1
and HS5 CTCF binding sites (CBSs) on canonical β-globin locus border). CREs have been explored as new
gene therapy targets for the globin gene expression, which is critical for gene therapy development of
hemoglobinopathies and thalassemia. Traditionally, studies of CREs regulating β globin locus gene expression
are limited between the border of 5'HS and 3'HS1 CTCF binding sites. Recently, together with others, we
revealed a nested multi-loop 3D genomic structure around the β-globin gene cluster. The multi-loop 3D genome
structure extends the regulatory landscape of the β-globin gene cluster with an extension of 145kb downstream
(forming a 3D genomic structure called d-TAD) and a 110kb sub-TAD upstream (forming a 3D genomic structure
called u-TAD). Utilizing genome editing of multiple CBSs (deletions and inversions) bordering the β-globin gene
cluster, we found that the deletion of the CBS at 3'HS1 – the β-globin locus downstream boundary frequently
disrupted by HPFH deletions – is sufficient to induce γ-globin in adult red blood cells. Importantly, we located an
HPFH enhancer that's long speculated for the juxtaposition to activate fetal hemoglobin in HPFHs is responsible
for the reactivation of γ-globin. By deleting the 48kb region to bring the HPFH enhancer closer to the beta-globin
locus, we also observed an upregulation of fetal hemoglobin, suggesting the HPFH enhancer is a novel
conditional enhancer for γ globin expression. Our published work, together with others, strongly suggests the
CREs nested in the downstream sub-TAD of the β-globin gene cluster indeed played an important role in
regulating globin gene expression. These data lead us to hypothesize that CREs in d-TAD are regulating β globin
gene expression through long-range 3D genomic interactions. With the most updated technologies, we propose
two research aims. In Aim1, we will use CRISPR/Cas9-based prime editing to introduce TF binding mutant
precisely to interrogate the TF binding cooperativity in the TF binding hubs located in d-TAD. Epigenomic editing
will also be applied to TF binding hubs at d-TAD in HUDEP-2 cells to examine the histone PTM's role in regulating
gene expression. We will also apply genomic and epigenome editing to make CREs more active in promoting γ-
globin expression. In Aim2, we propose to study the 3D CRE hubs formed by CREs between d-TAD and
canonical β-globin cluster. We will use HiChIP to dissect the interactions mediated by active TFs like GATA1
and repressive TFs like BCL11A. Overall, our proposed research will expand the mechanistic view of the poised
expression of γ-globin and provide new gene therapy targets for sickle cell disease or β-thalassemia.
项目摘要/摘要
在人类基因组中,只有10%的编码区域负责蛋白质编码。特别是,非
直接调节基因表达的编码区域 - 顺式调节元件(CRE) -
在正常发育和致病性发展中的重要性。 Cres通常受
转录因子(TFS)。 CRE在胎儿到成人红细胞生成期间的球蛋白转换中起着重要作用。
CRE充当增强子(LCR区域),副本(γ球蛋白启动子中的Bcl11a结合位点)或绝缘子(3'HS1
和HS5 CTCF结合位点(CBSS)在规范β-珠蛋白基因座边界上)。 CRE已被探索为新的
Globin基因表达的基因治疗靶标,这对于基因治疗的发展至关重要
血红蛋白病和丘脑贫血。传统上,调节β球蛋白基因座基因表达的CRE的研究
在5'Hs和3'HS1 CTCF结合位点的边界之间受到限制。最近,我们与其他人一起
揭示了围绕β-珠蛋白基因簇周围的嵌套多环3D基因组结构。多环3D基因组
结构扩展了β-珠蛋白基因簇的调节景观,下游延伸145kb
(形成一个称为D-TAD的3D基因组结构)和110KB tad上游(形成3D基因组结构
称为U-Tad)。利用与β-珠蛋白基因接壤的多个CBS(缺失和反转)的基因组编辑
群集,我们发现CBS在3'HS1处的删除经常下游边界上的β-珠蛋白基因座
受HPFH缺失破坏 - 足以诱导成年红细胞中的γ-球蛋白。重要的是,我们找到了
长期以来一直猜测并置激活HPFH中的胎儿血红蛋白的HPFH增强剂是负责
用于γ-球蛋白的重新激活。通过删除48KB区域以使HPFH增强器更靠近β-珠蛋白
基因座,我们还观察到胎儿血红蛋白的上调,这表明HPFH增强剂是一种新颖
条件增强子用于γ球蛋白表达。我们已发表的作品与他人一起强烈暗示
嵌套在β-珠蛋白基因簇的下游亚tad中的CRE确实在
调节球蛋白基因表达。这些数据使我们假设D-TAD中的CRE正在调节β球蛋白
通过远程3D基因组相互作用的基因表达。借助最新的技术,我们建议
两个研究目的。在AIM1中,我们将使用基于CRISPR/CAS9的Prime编辑来介绍TF绑定突变体
精确地询问位于D-TAD中的TF结合枢纽中的TF结合配位。表观基因组编辑
还将应用于HUDEP-2细胞中D-TAD的TF结合集线器,以检查组蛋白PTM在调节中的作用
基因表达。我们还将应用基因组和表观基因组编辑,以使CRE在促进γ-方面更加活跃
球蛋白表达。在AIM2中,我们建议研究由D-TAD和
规范β-珠蛋白簇。我们将使用Hichip剖析主动TF(例如GATA1)介导的相互作用
和BCL11A等反射性TF。总体而言,我们提议的研究将扩大中毒的机械观点
γ-球蛋白的表达,并为镰状细胞疾病或β-丘脑贫血提供新的基因治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaotian Zhang其他文献
Xiaotian Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
mTOR调控中性粒细胞中RNA结合蛋白ZFP36L2参与成人斯蒂尔病细胞因子风暴的机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
mTOR调控中性粒细胞中RNA结合蛋白ZFP36L2参与成人斯蒂尔病细胞因子风暴的机制
- 批准号:82271821
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
- 批准号:82100169
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10905596 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Role of meningeal lymphatic vasculature in neuroimmune communication development
脑膜淋巴管系统在神经免疫通讯发育中的作用
- 批准号:
10566682 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别: