Accelerated absorption of insulin via a subcutaneously implanted, vascularized micro-chamber
通过皮下植入的血管化微室加速胰岛素的吸收
基本信息
- 批准号:10721366
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2024-08-02
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAnimal ModelAnimalsAreaArizonaBloodBlood GlucoseBlood VesselsBolus InfusionCannulasCathetersCellsChildClinicCustomDataDermisDevice DesignsDevicesDiffusionDoseDrug KineticsEngineeringFDA approvedFatty acid glycerol estersFormulationFutureGlucoseGrowthHistologicHourHumanHypoglycemiaImplantInfusion proceduresInjectionsInsulinInsulin Infusion SystemsInsulin-Dependent Diabetes MellitusIntercellular FluidKineticsLaboratoriesLifeMeasuresMedical DeviceMembraneNeedlesNovoLogOutcomePancreasPatientsPenetrationPermeabilityPolyestersPolyethylenesPolytetrafluoroethyleneProcess MeasurePumpRaccoonsReproducibilityRodentSafetySideSkinSubcutaneous InjectionsSubcutaneous TissueSurfaceSyringesTechnologyTestingTherapeutic EffectThinnessTimeTissuesUniversitiesVascularizationabsorptionblood glucose regulationclinical translationdesigndiabetes controldiabetic patientdiabetic ratexperienceimplantationimprovedin vivo evaluationinsulin secretionlife historymanufacturemedical implantphase 1 studyphase 2 studypreservationpreventprototypesealsubcutaneoustype I diabeticuptake
项目摘要
Project Summary
In Type I diabetic (T1D) patients, insulin is injected into the subcutaneous (SC) tissue, by needle or a pump and
SC cannula. A bolus of insulin SC reaches its peak in about one hour or more. This slow absorption is in dramatic
contrast to the secretion of insulin into the blood by the normal human pancreas, a process measured in seconds.
Consequently, patients with T1D often struggle to control their glucose, experiencing swings into hyper- and
hypoglycemia. Faster insulin absorption will greatly improve glucose control in T1D patients, reducing
complications in the near and long term.
In rodent studies performed in the laboratory of Dr. Papas at the University of Arizona, administering insulin via
a subcutaneously implanted vascularized chamber resulted in a Tmax of 7.5 minutes versus 22.4 min after SC
injection. If translatable to the clinic, accelerated insulin absorption would greatly improve glucose control.
Procyon Technologies LLC proposes to capitalize on these preliminary findings and evaluate the absorption
kinetics of insulin delivery through custom-designed, SC-implanted, durable, low-volume microchambers
compatible with insulin dosing (which especially in children, is measured in the low µL range, volumes difficult to
measure and accurately deliver by syringe and needle). Small doses can be accurately delivered by existing
precision insulin pumps, but they do so into the relatively avascular SC space. The Procyon microchambers are
specifically engineered to develop a vascular network at the implant-tissue interface to accelerate insulin
absorption and can connect with pumps. The chambers will be manufactured with membranes and materials
long approved by the FDA for implantable medical devices (e.g., PTFE, polyester, and polyethylene).
We propose the following three Specific Aims (SA), to be investigated in a diabetic rat model. SA1: To
manufacture and bench test fixed volume (5L) Procyon microchambers with three different
vascularized surface area to volume ratios (A/V) for in vivo testing in SA 2. We hypothesize that a critical
design parameter for subcutaneously implanted, vascularized microchambers is the A/V ratio. This Aim will
quantify the impact of this parameter for future device designs. SA2: To compare pharmacokinetics of the
three microchamber configurations fabricated in SA1 versus subcutaneous injection of insulin.
Reproducible, detailed pharmacokinetic data, obtained after a single dose of regular human insulin (NovoLog),
injected SC or into a vascularized microchamber, will be compared over a period of 3 months. SA3: To evaluate
histologically the “life history” of the three Procyon microchamber configurations tested in vivo in SA2
over a period of 3 months. These studies focusing on evaluating the maturing vascularization at the implant-
tissue interface will provide information about durability, safety and, especially, the continued functionality of
delivering insulin via a microchamber over months. Successful completion of these aims will frame device
configurations for future studies in large animals and ultimately humans.
项目摘要
在I型糖尿病(T1D)患者中,胰岛素通过针或泵注入皮下(SC)组织,然后
SC插管。一剂SC胰岛素在大约一小时或更长时间内达到峰值。这种缓慢的吸收是戏剧性的
相比之下,正常人类胰腺将胰岛素分泌到血液中,这一过程以秒为单位。
因此,患有T1D的患者经常难以控制自己的血糖,经历波动进入高血糖和高血糖。
低血糖症。更快的胰岛素吸收将大大改善T1D患者的血糖控制,减少
近期和长期的并发症。
在亚利桑那大学帕帕斯博士的实验室进行的啮齿动物研究中,通过
皮下植入血管化室的Tmax为7.5分钟,而SC后为22.4分钟
注射。如果可以移植到临床上,加速胰岛素吸收将极大地改善血糖控制。
Procyon Technologies LLC建议利用这些初步发现并评估吸收
通过定制设计、SC植入、耐用、低容量微腔给药的动力学
与胰岛素剂量兼容(特别是在儿童中,测量范围在低µL范围内,容量难以
通过注射器和针头测量并准确传递)。小剂量可通过现有的
精密胰岛素泵,但他们这样做是为了进入相对无血管的SC空间。冥王星微室是
专门设计用于在植入物-组织界面形成血管网络以加速胰岛素
吸收,并可与泵连接。这些腔体将用膜和材料制造
长期被FDA批准用于植入式医疗设备(例如,聚四氟乙烯、聚酯和聚乙烯)。
我们建议在糖尿病大鼠模型中研究以下三个特定目的(SA)。SA1:TO
三种不同体积(5L)普鲁西酮微室的研制与台架试验
血管表面积与体积比(A/V)用于体内测试SA 2。我们假设一个关键的
皮下植入的血管化微腔的设计参数是A/V比。这一目标将
量化此参数对未来设备设计的影响。SA2:比较两种药物的药代动力学
在SA1中制造的三种微腔配置与皮下注射胰岛素的比较。
可重复的、详细的药代动力学数据,在单剂量常规人胰岛素(NovoLog)后获得,
在3个月的时间里,将SC或注入血管化微腔内进行比较。SA3:评估
在SA2体内测试的三种Procyon微室配置的组织学“生活史”
超过3个月的时间。这些研究集中在评估种植体处成熟的血管形成-
组织界面将提供有关耐用性、安全性的信息,特别是关于持续功能的信息
在几个月的时间里通过微腔输送胰岛素。这些目标的成功完成将构成一个装置
未来在大型动物和最终人类身上进行研究的配置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert C Johnson其他文献
Robert C Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




