Characterization of the Neurobiological Profiles of Young Adults with and without Developmental Language Disorder (DLD)
患有和不患有发育性语言障碍 (DLD) 的年轻人的神经生物学特征的表征
基本信息
- 批准号:10721464
- 负责人:
- 金额:$ 21.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAdolescent and Young AdultAdultAgeAnatomyAnxietyAreaAuditoryAwardBiological MarkersBrainBrain imagingChildChild LanguageClassificationClinicalCognitionCognitiveCollaborationsCommunicationComplexComputer ModelsCoupledDataDevelopmentDiagnosticDimensionsDiseaseDyslexiaElasticityElectroencephalographyEmerging TechnologiesEmotionalEnvironmentExclusion CriteriaExtramural ActivitiesFailureFamilyFoundationsFriendsFunctional Magnetic Resonance ImagingFundingGeneticGoalsGrantHeadHearingHeterogeneityHigh PrevalenceHumanImageImpairmentImprisonmentIndividualIndividual DifferencesKnowledge acquisitionLanguageLanguage Development DisordersLanguage DisordersLanguage TestsLearning SkillLinkLogistic RegressionsLongevityMRI ScansMachine LearningMagnetic Resonance ImagingMapsMeasuresMedicalMental DepressionMentorsMentorshipMetalsMethodsModelingMorphologic artifactsMotionNeuroanatomyNeurobiologyNeurodevelopmental DisorderNeurologicNeurosciencesNoiseOccupationalOptical TomographyOpticsParticipantPatternPopulationProductionQualifyingRecording of previous eventsResearchResearch PersonnelResearch Project GrantsResolutionRiskSample SizeSamplingSchool-Age PopulationScientistSensorySeriesServicesSeveritiesShort-Term MemorySignal TransductionSocial isolationSocietiesSpeechStandardizationStructureTarget PopulationsTechniquesThree-Dimensional ImageTrainingTravelUnited StatesUnited States National Institutes of HealthWilliams SyndromeWorkautism spectrum disorderautomated analysisbehavioral phenotypingcognitive neurosciencecost effectivedensitydesigndevelopmental diseasediffuse optical tomographyemotion regulationexecutive functionexperiencefunctional near infrared spectroscopyhemodynamicsindexinginterestlanguage comprehensionlanguage impairmentlanguage processingmachine learning methodmeetingsmembermultimodalityneuralneuroimagingnovelnovel strategiesoptical imageroptical imagingpeerportabilityprogramsresearch studyresponseskillssource localizationspecific language impairmentsuccesstemporal measurementtraitverbalyoung adult
项目摘要
ABSTRACT
Approximately 7% of school-aged children have Developmental Language Disorder (DLD), making it one of the
highest prevalence of the child language disorders. DLD places individuals at risk for academic failure, social
isolation, anxiety, depression, poor emotional regulation, juvenile incarceration (65%), and repeat offending
(70%). DLD persists into adulthood, with conservative estimates indicating that 12 million adults in the United
States have DLD, but because the behavioral phenotype can overlap with that of typical individuals', they may
no longer qualify for support services. Notably, although these young adults with DLD "appear" normal, their
language abilities are linked to brain structure and cortical dynamics that differ qualitative from typical individuals,
suggesting that neural signature of DLD may be a critical marker of the disorder. New machine learning methods
have revolutionized the neuroscience of neurodevelopmental disorders and advances in registering the optical
signal of functional near infrared spectroscopy (fNIRS) to neuroanatomical data now make capturing the spatial-
temporal dynamics of spoken language processing feasible and cost-effective for speech, language, and hearing
populations. Expertise in these two domains is critical for high impact speech-language research. The candidate
is an established investigator with a strong record of research and extramural funding spanning more than 30
years in the area of DLD. The goal of the enhancement is to augment the candidate's current expertise in DLD
by gaining advanced training in fNIRS neuroimaging and newer computational modeling techniques to keep the
candidate's program of research in-step with emerging and evolving neuroimaging and computational modeling
approaches. The goals of the enhancement are to: (1) advance the candidate's skills in cutting-edge fNIRS
methods, (2) incorporate computational modeling into the candidate's program of research, and (3) catalyze new
research collaborations with cognitive neuroscientists, optical imagers, and computational modelers. Didactic
course work in applied machine learning and computational modeling (semester long courses), 1:1 meetings,
scholarly travel and a small-scale research project will provide the enhanced experience to substantially
augment the research skills of the candidate, seed new collaborations with scientists in other fields whose work
is relevant to DLD. The research project will provide the hands-on opportunity for the candidate to acquire
expertise under the mentorship of a superior team of young, up and coming mentors with expertise in optical
imaging (fNIRS), and functional and structural brain imaging (fMRI, MRI), and a group of senior collaborators
with expertise in computational modeling and cognitive neuroscience. A group of young adults ages 18;0 - 21;0
with/without DLD (n = 44) will complete standardized assessments, a structural MRI, and a series of fNIRS
tasks, which will then be used as inputs to derive multidimensional models of DLD. Overall, the enhancement
will significantly augment the current research trajectory of a well-established DLD researcher and provide the
foundation for new NIH funding to develop multidimensional neurobiologically derived models of DLD.
抽象的
大约7%的学龄儿童患有发育性语言障碍(DLD),使其成为其中之一
儿童语言障碍的患病率最高。 DLD使个人面临学术失败,社会的风险
隔离,焦虑,抑郁,情绪调节不良,青少年监禁(65%)和重复犯罪
(70%)。 DLD一直持续到成年,保守的估计表明,统一的1200万成年人
各州有DLD,但是由于行为表型可以与典型个体的表型重叠,因此他们可能
不再有资格获得支持服务。值得注意的是,尽管这些患有DLD的年轻人显得正常,但他们
语言能力与大脑结构和皮质动态有关,这些动态与典型个体不同,
表明DLD的神经特征可能是该疾病的关键标志。新的机器学习方法
已经彻底改变了神经发育障碍的神经科学和注册光学的进步
神经解剖学数据的功能近红外光谱(FNIRS)的信号现在使捕获空间
语言处理的时间动态可行和具有成本效益的语音,语言和听力
人群。这两个领域的专业知识对于高影响语音语言研究至关重要。候选人
是一名既定的研究者
在DLD地区多年。增强的目的是增强候选人在DLD中的当前专业知识
通过在FNIRS神经影像学和新的计算建模技术中获得高级培训,以保持
候选人的研究计划与新兴和不断发展的神经成像和计算建模计划
方法。增强的目标是:(1)提高候选人在尖端FNIRS方面的技能
方法,(2)将计算建模纳入候选人的研究计划,(3)催化新的
与认知神经科学家,光学成像器和计算建模者的研究合作。教学
应用机器学习和计算建模(学期长课程)的课程工作,1:1会议,
学术旅行和小规模的研究项目将为实质上提供增强的体验
增强候选人的研究技能,种子与其他领域的科学家进行新的合作
与DLD有关。研究项目将为候选人提供动手的机会
在一支具有光学专业知识的年轻,新兴和即将到来的导师的指导下的专业知识
成像(FNIRS)以及功能和结构性脑成像(fMRI,MRI)和一组高级合作者
具有计算建模和认知神经科学方面的专业知识。一群18岁的年轻人; 0-21; 0
使用/没有DLD(n = 44)将完成标准化评估,结构性MRI和一系列FNIRS
任务,然后将其用作输入,以得出DLD的多维模型。总体而言,增强功能
将大大扩大良好的DLD研究人员的当前研究轨迹,并提供
新的NIH资金基金会开发了DLD的多维神经生物学模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia L Evans其他文献
Julia L Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia L Evans', 18)}}的其他基金
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8117260 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8601558 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8528550 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8320198 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8778523 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8442399 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Processing and Sentence Comprehension in SLI
SLI 中的认知处理和句子理解
- 批准号:
8926011 - 财政年份:2010
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Representation in Specific Language Impairment
特定语言障碍中的认知表征
- 批准号:
6535509 - 财政年份:2002
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Representation in Specific Language Impairment
特定语言障碍中的认知表征
- 批准号:
6787251 - 财政年份:2002
- 资助金额:
$ 21.3万 - 项目类别:
Cognitive Representation in Specific Language Impairment
特定语言障碍中的认知表征
- 批准号:
6687211 - 财政年份:2002
- 资助金额:
$ 21.3万 - 项目类别:
相似海外基金
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 21.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 21.3万 - 项目类别: