Optimizing Acquisition and Reconstruction of Under-sampled MRI for Signal Detection
优化欠采样 MRI 的采集和重建以进行信号检测
基本信息
- 批准号:10730707
- 负责人:
- 金额:$ 43.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgreementAnatomyBiomedical ResearchCaliforniaClinicalCollaborationsDataData ScienceData SetDependenceDetectionDiagnosticDoseEnvironmentEvaluationGrantHallucinationsHealthHealth Care CostsHumanImageIonizing radiationKneeLesionLinear ModelsLocationMagnetic Resonance ImagingMathematicsMeasuresMethodsModelingMorphologic artifactsNeoplasm MetastasisNetwork-basedNew YorkNoiseOutcomePatientsPatternPerformancePositron-Emission TomographyProcessProtonsPsychophysicsPublic HealthResearchResearch Project GrantsRoentgen RaysSamplingSignal TransductionStructureStudentsSystemTask PerformancesTimeUnited States Food and Drug AdministrationUniversitiesX-Ray Computed Tomographybroadening participation researchcollegedata acquisitiondata spacedeep learningdensityexperimental studyimaging modalityimprovedinterestloss of functionmagnetic fieldneural networkpublic databasereconstructionsimulationsingle photon emission computed tomographystatisticstwo-dimensional
项目摘要
PROJECT SUMMARY
Magnetic resonance imaging (MRI) is a versatile imaging modality that suffers from slow
acquisition times, which is a challenge, for both time sensitive applications and for patient
throughput. Accelerating MRI would benefit patients both by reducing the time they need to
be in the scanner and in reducing the cost of healthcare. This project is part of a larger
scientific effort to accelerate MRI while maintaining the diagnostic quality. Acceleration, even
by a factor of two, would result in a major advance for public health. Two of the current
approaches to accelerate MRI rely on collecting less data (under-sampling) and deep learning
reconstruction. These approaches can lead to images with diagnostic quality using significant
under-sampling but may suffer from artifacts which are hard to characterize and may
sometimes resemble anatomy. Specifically, this project will optimize the performance
of accelerated MRI, including undersampling patterns and deep learning
reconstructions, on detecting and localizing subtle lesions. To carry out this
optimization, we will first develop the methods required for detection of lesions by machine
and human observer models. The human observer models will be validated by
psychophysical studies where humans perform the detection task. In the first aim of this
project, we will apply and develop detection tasks and model observers. We will consider
under-sampled acquisition strategies in MRI including one and two-dimensional subsampling
methods using deep learning reconstructions which enforce data consistency. We will
develop detection tasks for signals in anatomical backgrounds were the signal location is
known and when the observer needs to search for the signal. The human and machine
performance in these tasks will be modeled. In the second aim, we will optimize data
acquisition and neural network reconstruction using signal detection with observer models
and psychophysical experiments. We will also introduce a detectability-based loss function
to neural network reconstructions. There is recent interest in exploring the benefits of low/mid
field MRI which has a trade-off with higher noise. In the third aim, we will evaluate the effect
of field strength on signal detection. We will use data from high field acquisitions from a
publicly available database to model images from lower magnetic fields. Using the detection
of subtle lesions, we will evaluate detection performance with varying field strength. This
research project will help to strengthen the research environment and broaden participation
at Manhattan College by involving students in biomedical research incorporating applied
mathematics, statistics and data science.
项目总结
磁共振成像(MRI)是一种多用途的成像方式,但速度慢
获取时间,这对于时间敏感型应用和患者来说都是一项挑战
吞吐量。加速核磁共振成像将使患者受益,因为它可以减少患者需要的时间
在扫描仪和降低医疗保健成本方面。这个项目是一个更大的
在保持诊断质量的同时加快磁共振成像的科学努力。加速,甚至
两个因素,将导致公共卫生的重大进步。当前的两个
加速磁共振成像的方法依赖于收集更少的数据(欠采样)和深度学习
重建。这些方法可以使用显著的图像质量
采样不足,但可能会出现难以表征的伪影,并且可能
有时类似于解剖学。具体地说,该项目将优化性能
加速磁共振成像,包括欠采样模式和深度学习
重建,关于检测和定位细微的病变。要实现这一点
优化,我们将首先开发机器检测病变所需的方法
和人类观察者模型。人类观察者模型将通过以下方式进行验证
人类执行探测任务的心理物理学研究。在这个项目的第一个目标中
项目,我们将应用和开发探测任务和模型观察员。我们会考虑
磁共振成像中的欠采样捕获策略包括一维亚采样和二维亚采样
方法使用深度学习重建来加强数据一致性。我们会
开发解剖背景中信号的检测任务
已知以及观察者何时需要搜索信号。人和机器
将对这些任务的绩效进行建模。在第二个目标中,我们将优化数据
基于观测器模型的信号检测捕获和神经网络重构
和心理物理实验。我们还将引入基于可检测性的损失函数
神经网络重建。最近有兴趣探索低/中的好处
现场核磁共振,它有一个权衡与较高的噪音。在第三个目标中,我们将评估效果
信号检测的场强。我们将使用来自高场采集的数据
可公开使用的数据库,用于模拟来自较低磁场的图像。使用检测
对于细微病变,我们将评估不同场强下的检测性能。这
研究项目将有助于加强研究环境和扩大参与
在曼哈顿学院,让学生参与生物医学研究,将应用
数学、统计学和数据科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angel Ramon Pineda其他文献
Angel Ramon Pineda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 43.45万 - 项目类别:
Standard Grant