Harnessing Atropisomerism in beta-Carbolines for the Discovery of New Reactions and Small Molecule Probes
利用 β-咔啉中的阻转异构现象来发现新反应和小分子探针
基本信息
- 批准号:10730343
- 负责人:
- 金额:$ 40.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcetylcholinesteraseAlkaloidsAlkynesAlzheimer&aposs disease modelAnti-Bacterial AgentsAreaAspartic AcidBehaviorBeta CarbolinesBindingBiochemicalBiologicalBiologyBiomedical ResearchCarbolinesCatalysisChemicalsColchicineCollaborationsCommunitiesCouplingDNA BindingDevelopmentDiseaseDrug KineticsEvaluationFDA approvedGoalsHandHandednessHealthHumanHydrogen PeroxideImageIndividualIonsKineticsLaboratoriesLigandsMethodologyMethodsMicrotubule PolymerizationMissionModelingMolecularMolecular ConformationMuscarinicsNaphthaleneNational Institute of General Medical SciencesNatural ProductsNitrogenPeer ReviewPeptidesPersonal SatisfactionPharmaceutical ChemistryPharmaceutical PreparationsPositioning AttributePropertyPublic HealthPublicationsReactionResearchResearch InfrastructureResearch PersonnelResolutionRestRotationScientific InquirySeminalStructureStructure-Activity RelationshipStudentsTherapeuticTraining and EducationTransition ElementsUnited States National Institutes of HealthUniversitiesWorkanalogbioactive scaffoldcatalystchemical reactionchiral moleculecollegedesigndrug developmentdrug discoveryenantiomerhealth goalsimprovedinhibitornovelnovel therapeuticsoxidationprofessorprogramspublic health relevanceracemizationscaffoldserotonin receptorsmall moleculesuccesstelenzepinetoolundergraduate student
项目摘要
Project Summary
New therapeutics that have potential for treating disease are among the public health goals that are central
to the mission of the NIH. While traditional strategies have had remarkable success, molecules with novel
structures and new modes of action are still needed to serve as drug leads. In this work, we wish to study the
unique stereochemical property of small molecules known as atropisomerism. Chiral molecules with an
atropisomeric axis, once seen by the scientific community as too risky for development, are now becoming
increasingly common in drug discovery and medicinal chemistry because of improvements made to compound
potency, selectivity, stability, and pharmacokinetics. In this proposal, our team of undergraduate student
researchers at Providence College will continue to shift the paradigm by exploiting stable atropisomerism in the
nitrogen-containing heterocycle known as the β-carboline. We have identified 1-aryl-substituted-β-carbolines
with antibacterial, neuropharmacological, and DNA-binding activity, which make them appropriate for study
through the National Institute of General Medical Sciences. Our main focus is on the atropisomeric behavior of
1-aryl-substituted-β-carbolines, in which we have observed barriers to rotation greater than 30 kcal/mol. Given
the remarkable configurational stability of these molecules, we will establish three new strategies for harnessing
their potential as chiral molecules for improving human health and well-being. Our first goal will be to develop a
kinetic resolution strategy for rapidly accessing the individual enantiomers of 1-aryl-substituted-β-carbolines. We
will use β-turn peptides to perform an asymmetric N-oxidation of these molecules, work which will be aided by a
continuing collaboration with colleagues at Yale University in the laboratory of Professor Scott Miller. The second
goal of the project will be the synthesis of the natural product chaetogline F, a β-carboline natural product with
known inhibitory activity of acetylcholinesterase. We will prepare the natural product, resolve the enantiomers,
and perform a structure-activity relationship study of this molecule which will shed light on the importance of
atropisomerism in target binding. The third goal is to develop a new asymmetric N,P-ligand based on the β-
carboline scaffold. We will synthesize the new ligand via a cross-coupling strategy and then assess its ability to
induce asymmetry in the synthesis of neuroactive alkaloids via alkyne additions to iminium ions. Finally, this
proposal will expose undergraduate students at Providence College to impactful research, which will both
improve the culture of scientific inquiry in a liberal arts setting and inspire students to continue in a STEM or
health-related field upon graduation.
项目概要
具有治疗疾病潜力的新疗法是公共卫生目标的核心
NIH 的使命。虽然传统策略取得了显着的成功,但具有新颖分子
仍然需要结构和新的作用方式作为药物先导化合物。在这项工作中,我们希望研究
小分子独特的立体化学性质称为阻转异构。手性分子具有
曾经被科学界认为开发风险太大的阻转异构轴现在正变得越来越重要
由于化合物的改进,在药物发现和药物化学中越来越常见
效力、选择性、稳定性和药代动力学。在这个提案中,我们的本科生团队
普罗维登斯学院的研究人员将继续通过利用稳定的阻转异构现象来改变范式
含氮杂环称为β-咔啉。我们已经鉴定出 1-芳基取代-β-咔啉
具有抗菌、神经药理学和 DNA 结合活性,这使得它们适合研究
通过国家普通医学科学研究所。我们的主要关注点是阻转异构行为
1-芳基取代-β-咔啉,我们观察到其中的旋转势垒大于 30 kcal/mol。给定
这些分子卓越的构型稳定性,我们将建立三种新的策略来利用
它们作为手性分子改善人类健康和福祉的潜力。我们的首要目标是开发一个
快速获得 1-芳基取代-β-咔啉单个对映体的动力学拆分策略。我们
将使用 β-转角肽对这些分子进行不对称 N-氧化,该工作将由
继续与耶鲁大学斯科特·米勒教授实验室的同事合作。第二个
该项目的目标是合成天然产物chaetogline F,这是一种β-咔啉天然产物,具有
已知乙酰胆碱酯酶的抑制活性。我们将制备天然产物,解析对映体,
并对这种分子进行结构-活性关系研究,这将阐明
靶标结合中的阻转异构现象。第三个目标是开发一种基于β-的新型不对称N,P-配体
咔啉支架。我们将通过交叉偶联策略合成新的配体,然后评估其能力
通过向亚胺离子添加炔烃,诱导神经活性生物碱合成中的不对称性。最后,这个
该提案将使普罗维登斯学院的本科生接触到有影响力的研究,这将
改善文科环境中的科学探究文化,并激励学生继续学习 STEM 或
毕业后选择健康相关领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seann Patrick Mulcahy其他文献
Seann Patrick Mulcahy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Effect of Acetylcholinesterase inhibitors on Bone Metabolism and Fracture Risk Factors among older adults with mild to moderate Alzheimer's Disease
乙酰胆碱酯酶抑制剂对患有轻至中度阿尔茨海默病的老年人骨代谢和骨折危险因素的影响
- 批准号:
10739853 - 财政年份:2023
- 资助金额:
$ 40.73万 - 项目类别:
Acetylcholinesterase Complex Protein-Protein Interactions as Drug Targets Against Organophosphate-induced Neurotoxicity.
乙酰胆碱酯酶复合物蛋白质-蛋白质相互作用作为抗有机磷诱导的神经毒性的药物靶点。
- 批准号:
10772738 - 财政年份:2023
- 资助金额:
$ 40.73万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 40.73万 - 项目类别:
Acetylcholinesterase Complex Protein-Protein Interactions as Drug Targets Against Organophosphate-induced Neurotoxicity.
乙酰胆碱酯酶复合物蛋白质-蛋白质相互作用作为抗有机磷诱导的神经毒性的药物靶点。
- 批准号:
10303546 - 财政年份:2021
- 资助金额:
$ 40.73万 - 项目类别:
Investigating the in vivo targets and mechanism of action of a toxic acetylcholinesterase-derived peptide upregulated in Alzheimer's disease
研究阿尔茨海默病中上调的有毒乙酰胆碱酯酶衍生肽的体内靶点和作用机制
- 批准号:
2480200 - 财政年份:2020
- 资助金额:
$ 40.73万 - 项目类别:
Studentship
Improved Therapeutics for the Resurrection of the Aged Form of Acetylcholinesterase
老化乙酰胆碱酯酶复活的改进疗法
- 批准号:
9977281 - 财政年份:2019
- 资助金额:
$ 40.73万 - 项目类别:
Improved Therapeutics for the Resurrection of the Aged Form of Acetylcholinesterase
老化乙酰胆碱酯酶复活的改进疗法
- 批准号:
10238898 - 财政年份:2019
- 资助金额:
$ 40.73万 - 项目类别:
Elucidation of the cell protective mechanism of acetylcholinesterase variants in cardiomyocyte and approach to therapy for myocardial infarction
心肌细胞乙酰胆碱酯酶变异体的细胞保护机制的阐明及心肌梗死的治疗方法
- 批准号:
18K15850 - 财政年份:2018
- 资助金额:
$ 40.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Alzheimer's disease drugs inhibiting acetylcholinesterase on prion replication.
阿尔茨海默病药物抑制乙酰胆碱酯酶对朊病毒复制的影响。
- 批准号:
481759-2015 - 财政年份:2015
- 资助金额:
$ 40.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Reactivation of Aged Acetylcholinesterase: Design and Development of Novel Therap
老化乙酰胆碱酯酶的重新激活:新型疗法的设计和开发
- 批准号:
8735550 - 财政年份:2014
- 资助金额:
$ 40.73万 - 项目类别:














{{item.name}}会员




