AI-powered cross-level cross-species omics data integration to elucidate mechanisms of EL
人工智能驱动的跨级别跨物种组学数据集成阐明 EL 机制
基本信息
- 批准号:10729946
- 负责人:
- 金额:$ 45.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAgingAlgorithmsAlzheimer&aposs DiseaseBindingBiologicalBiological MarkersBiological ModelsBiologyCaenorhabditis elegansChemicalsCollaborationsDNADataData AnalysesData ReportingData SetDimensionsDiseaseDrug ModelingsDrug usageFoundationsGeneticGenomicsGenotypeHealthHumanIndividualKnowledgeLaboratoriesLearningLongevityMachine LearningMathematicsMethodologyMethodsModelingMolecularMolecular TargetMultiomic DataNaturePathway interactionsPerformancePharmacologic SubstancePharmacologyPhasePhenotypePhysiologicalProteinsProteomicsRNAReproducibilityResourcesSystemWorkbiological systemsbiomarker identificationcancer genomicsdata harmonizationdata integrationdata miningdata modelingdata resourcedeep learningdiverse datadrug discoverydruggable targetepigenomicsfeature selectiongenetic informationgenome-widegenomic dataheterogenous datahigh dimensionalityhigh throughput technologyimprovedin vivo Modelinnovationlearning strategymachine learning algorithmmachine learning modelmetabolomicsmodel organismmouse modelmultilevel analysismultimodalitymultiple omicsnetwork modelsnew therapeutic targetnovelnovel markerpharmacologicphenomicspredictive modelingscreeningsuccesstargeted agenttraittranscriptomicstransfer learningtransmission process
项目摘要
Abstract
It is a formidable task to identify the molecular causes of complicated traits such as exceptional longevity (EL).
The majority of machine learning algorithms generate mathematical correlations between genotypes and
phenotypes, but may fail to infer physiologically significant causes. A mechanistic understanding of how
individual molecular components work together in a system and how the system is affected and adapted to the
molecular change requires knowledge of molecular interactions across all biological levels, from DNAs to
RNAs to proteins to metabolites to organismal phenotypes. By integrating multi-omics data, recent approaches
in multi-modal machine learning and multi-layer network model promise to address this deficiency. However,
existing machine learning approaches are hampered by high-dimensionality, non-uniformity, numerous
confounders, and biological differences in multi-omics data across data resources, data domains, and species
as well as lack of interpretability due to the black-box nature of machine learning models. We will develop a
transformative deep learning framework to address challenges for multi-omics data integration and predictive
modeling of causal genotype-EL associations. This project is established on our substantial preliminary results,
successes in systems pharmacology for Alzheimer's disease drug discovery and using C. elegans as disease
and aging models, and close collaborations between experimental and computational laboratories. We shall
overcome several obstacles in order to discover the molecular mechanisms of EL. We will develop and
validate novel algorithms to 1) harmonize non-uniform data sets by removing environmental and biological
confounding factors (e.g., age, species, etc.) and technical biases (e.g., batch effect), 2) explicitly model the
biological information flow from DNAs to RNAs to proteins to metabolites to organismal phenotypes, and 3)
determine causal genetic factors and molecular interactions underlying EL. Specifically, we will: (1) develop
MuLGIT, a causal deep learning-powered cross-layer multi-omics harmonization and integration framework
that follows the central dogma of biology for deciphering the molecular interplays underlying EL; (2) develop a
transfer learning method PATH-AE for cross-species omics data integration and modeling for elucidating
evolutionarily conserved and species-specific molecular determinants of EL; (3) identify molecular targets and
pharmaceutical agents of EL by merging new methodologies for multi-omics data integration with state-of-the-
art methods for chemical genomics and perturbation genomics; and (4) experimentally validate computational
predictions using C. elegans models. Completion of this project will allow us to identify novel biomarkers,
druggable targets, and pharmacological agents associated with remarkable lifespan (EL).
抽象的
确定超长寿命(EL)等复杂性状的分子原因是一项艰巨的任务。
大多数机器学习算法生成基因型和基因型之间的数学相关性
表型,但可能无法推断出生理上重要的原因。机械地理解如何
单个分子成分在一个系统中协同工作,以及该系统如何受到影响并适应
分子变化需要了解所有生物水平上的分子相互作用的知识,从 DNA 到
RNA、蛋白质、代谢物、生物体表型。通过整合多组学数据,最新的方法
多模态机器学习和多层网络模型有望解决这一缺陷。然而,
现有的机器学习方法受到高维性、非均匀性、数量众多的阻碍
跨数据资源、数据域和物种的多组学数据中的混杂因素和生物学差异
以及由于机器学习模型的黑盒性质而缺乏可解释性。我们将开发一个
变革性的深度学习框架,以应对多组学数据集成和预测的挑战
因果基因型-EL 关联的建模。这个项目是建立在我们实质性的初步成果的基础上的,
在阿尔茨海默病药物发现和使用秀丽隐杆线虫作为疾病的系统药理学方面取得成功
和老化模型,以及实验和计算实验室之间的密切合作。我们将
为了发现 EL 的分子机制,克服了一些障碍。我们将开发和
验证新算法以 1)通过消除环境和生物来协调非均匀数据集
混杂因素(例如年龄、物种等)和技术偏差(例如批次效应),2)明确建模
生物信息从 DNA 流向 RNA,再到蛋白质,再到代谢物,再到生物体表型,3)
确定 EL 的致病遗传因素和分子相互作用。具体来说,我们将:(一)开发
MuLGIT,因果深度学习驱动的跨层多组学协调和集成框架
遵循生物学的中心法则来破译 EL 背后的分子相互作用; (2) 开发一个
用于跨物种组学数据集成和建模的迁移学习方法 PATH-AE
EL 的进化保守性和物种特异性分子决定因素; (3) 识别分子靶标
通过将多组学数据集成的新方法与最新技术相结合,开发 EL 药物制剂
化学基因组学和微扰基因组学的艺术方法; (4) 实验验证计算
使用线虫模型进行预测。该项目的完成将使我们能够识别新的生物标志物,
可药物靶点以及与显着寿命(EL)相关的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alicia Melendez其他文献
Alicia Melendez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alicia Melendez', 18)}}的其他基金
Role of autophagy and retromer genes in GLP-1/Notch signaling
自噬和逆转录酶基因在 GLP-1/Notch 信号传导中的作用
- 批准号:
9171257 - 财政年份:2012
- 资助金额:
$ 45.85万 - 项目类别:
Role of autophagy and retromer genes in GLP-1/Notch signaling
自噬和逆转录酶基因在 GLP-1/Notch 信号传导中的作用
- 批准号:
8367474 - 财政年份:2012
- 资助金额:
$ 45.85万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 45.85万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 45.85万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 45.85万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 45.85万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 45.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 45.85万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 45.85万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 45.85万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 45.85万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 45.85万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




