The role of PRMT5 in preventing intra-chromosomal deletions in cancer cells

PRMT5 在预防癌细胞染色体内缺失中的作用

基本信息

  • 批准号:
    10728560
  • 负责人:
  • 金额:
    $ 7.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract PRMT5 is an arginine methyltransferase with key roles in cancer. The gene has pleiotropic functions ranging from gene regulation and development to modulation of DNA double strand break (DSBs) repair. In S-phase and mitosis, DSBs are repaired primarily by homologous recombination (HR) a process in which missing genetic information is copied from another undamaged chromosomal region. In humans, error-free HR is mediated by BRCA1, BRCA2 and RAD51. RAD52, an accessory gene, facilitates an error-prone HR sub-pathway that can produce intrachromosomal deletions (ICDs). PRMT5 appears to modulate chromatin remodeling at the DSB through the error-free BRCA1/2-RAD51 pathway. In fission yeast (S. pombe), we identified physical and genetic interactions between PRMT5 and RAD52. Deletion of PRMT5 increases the frequency of ICDs while deletion of RAD52 decreases ICDs suggesting that they have opposite functions. In cancer cells PRMT5 mutations increases the size of ICDs. Using artificial intelligence algorithms, we discovered multiple likely pathogenic mutations including three driver mutations in the active site of PRMT5 that are likely to destabilize the function of the enzyme. We hypothesize that PRMT5 inhibits ICDs by biasing repair of DNA double strand breaks toward conservative pathways. We developed innovative in vivo assays to probe HR repair mechanisms that produce ICDs. The repair mechanisms and factors involved are conserved from yeast to humans making the S. pombe model system highly tractable. A homology analysis reveals that all identified human mutated residues are present in yeast. In Aim1 we will place PRMT5 in the DNA damage repair epistatic pathway using mutational analysis and sensitivity to various DNA damage drugs. Additionally, we will employ in vivo repair assays to understand the HR pathways by which ICDs are produced in the absence of the PRMT5 function. In Aim 2 we will analyze PRMT5 mutations identified in cancer cells using the Catalogue of Somatic Mutations in Cancer (COSMIC). We will employ modeling techniques and enzymatic assays to test how these mutations affect the enzymatic function of PRMT5 and DSB repair. Most of these mutations are conserved in yeast making this analysis tractable. The findings will be further validated in human cells.
项目总结/摘要 PRMT 5是一种精氨酸甲基转移酶,在癌症中起关键作用。该基因具有多种功能, 从基因调控和发育到DNA双链断裂(DSB)修复的调节。在S期, 在有丝分裂中,DSB主要通过同源重组(HR)修复,在这一过程中,缺失的遗传基因 信息是从另一个未受损的染色体区域复制的。在人类中,无差错的HR由以下因素介导: BRCA 1、BRCA 2和RAD 51。RAD 52是一种辅助基因,它促进了一种易出错的HR子途径, 产生染色体内缺失(ICD)。PRMT 5似乎调节DSB的染色质重塑 通过无错误的BRCA 1/2-RAD 51通路。 在裂殖酵母(S. pombe),我们鉴定了PRMT 5和RAD 52之间的物理和遗传相互作用。删除 PRMT 5的缺失增加了ICD的频率,而RAD 52的缺失减少了ICD,这表明它们具有 相反的功能。在癌细胞中,PRMT 5突变增加了ICD的大小。利用人工智能 算法,我们发现了多个可能的致病突变,包括三个驱动突变的活性 PRMT 5的位点可能使酶的功能不稳定。 我们假设PRMT 5通过偏向修复DNA双链断裂来抑制ICD 走向保守的道路。 我们开发了创新的体内试验,以探测产生ICD的HR修复机制。修复 从酵母到人类,所涉及的机制和因子都是保守的,使S. pombe模型系统高度 听话同源性分析显示,所有鉴定的人突变残基都存在于酵母中。 在Aim 1中,我们将使用突变分析将PRMT 5置于DNA损伤修复上位性途径中, 对各种DNA损伤药物的敏感性。此外,我们将采用体内修复试验来了解 在PRMT 5功能缺失的情况下产生ICD的HR途径。在目标2中,我们将分析 使用癌症体细胞突变目录(COSMIC)在癌细胞中鉴定PRMT 5突变。我们 将采用建模技术和酶测定来测试这些突变如何影响酶功能 PRMT 5和DSB修复。这些突变中的大多数在酵母中是保守的,使得这种分析易于处理。的 研究结果将在人类细胞中得到进一步验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renee Bouley其他文献

Renee Bouley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renee Bouley', 18)}}的其他基金

The role of chromatin remodeling factors in DNA double strand break repair
染色质重塑因子在DNA双链断裂修复中的作用
  • 批准号:
    10201222
  • 财政年份:
    2021
  • 资助金额:
    $ 7.88万
  • 项目类别:
Discovery of a New Class of Antibacterials that Inhibits Penicillin-Binding Proteins
发现一类抑制青霉素结合蛋白的新型抗菌药
  • 批准号:
    8836124
  • 财政年份:
    2015
  • 资助金额:
    $ 7.88万
  • 项目类别:
Discovery of a New Class of Antibacterials that Inhibits Penicillin-Binding Proteins
发现一类抑制青霉素结合蛋白的新型抗菌药物
  • 批准号:
    9022317
  • 财政年份:
    2015
  • 资助金额:
    $ 7.88万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 7.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了