Functional and structural characterization of human auditory cortex using high resolution MRI

使用高分辨率 MRI 表征人类听觉皮层的功能和结构

基本信息

  • 批准号:
    10728782
  • 负责人:
  • 金额:
    $ 19.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY A more complete characterization of auditory cortical processing in humans is critical to understanding auditory perception and cognition. Without it, developing effective treatment options for various auditory processing deficits, such as those rooted in central auditory processing, may not be possible. Currently, there is a lack of consensus regarding how to define and parcellate even the earliest regions of auditory cortex, including primary auditory region A1, highlighting the significant gaps in our overall understanding of sound processing. Traditional approaches to defining primary auditory regions in humans include identifying the macroanatomical landmarks known as the Heshl’s gyri (HG) in each hemisphere and using their locations as a rough approximation of A1. While macroscopic anatomical information, such as the sulcal and gyral patterning in auditory cortex, can provide a rough estimate of where primary auditory regions are located, it is not sufficiently accurate. This is likely due to the high degree of variability in the size, shape, location, and number of HGs found in the auditory cortices of humans. Conversely, attempts to use functional properties—in particular, frequency mapping (tonotopy)—have also been met with limited success, as tonotopic gradients cannot be used to uniquely position the areal boundaries of A1. Aim 1 of the proposed research will exploit recent advances in magnetic resonance imaging (MRI) to non-invasively acquire unprecedentedly high-resolution in vivo human anatomical data at the mesoscopic scale (~0.35mm3), revealing biological information that was not previously available via neuroimaging. Access to this information will allow us to generate detailed, data-driven parcellations of auditory cortices that more closely match the underlying cytoarchitecture. Aim 2 will complement the anatomical approaches in Aim 1 by defining A1 in the same set of individuals, using several high-field cortical and sub- cortical measures of functional activation derived using both task-based and functional connectivity paradigms. The task-based functional data will be used to construct tuning maps for several key perceptually-relevant acoustic features, the parcellation of which will be constrained by the patterns of resting state connectivity between sub-cortical and cortical regions. Work from both aims, which includes mesoscopic MRI, subcortical neuroimaging, computational modeling, and resting state connectivity, will be combined to provide the auditory neuroimaging community with a state-of-the-art multimodal structure-function characterization of primary auditory cortex in humans. To aid in the standardization of auditory cortex characterizations in future studies, this information will be made publicly available, along with an atlas. The long-term goal is a complete characterization and parcellation of auditory cortex in humans. The resulting parcellations in normal-hearing populations will serve as a baseline for characterizing and subsequently developing effective treatments for auditory processing deficits in hearing-impaired populations.
项目摘要 更完整地描述人类听觉皮层处理过程对于理解听觉 感知和认知。没有它,开发各种听觉处理的有效治疗方案, 诸如那些植根于中枢听觉处理的缺陷可能是不可能的。目前,缺乏 关于如何定义和包裹甚至最早的听觉皮层区域,包括初级听觉皮层, 听觉区域A1,突出了我们对声音处理的整体理解的重大差距。传统 定义人类主要听觉区域的方法包括识别宏观解剖学标志 在每个半球被称为Heshl's gyri(HG),并使用它们的位置作为A1的粗略近似。 虽然宏观解剖信息,如听觉皮层中的沟回和脑回图案,可以提供 对于主要听觉区域的位置的粗略估计是不够准确的。这可能是由于 在听觉皮层中发现的HGs的大小、形状、位置和数量的高度可变性, 人类相反,尝试使用函数属性-特别是频率映射(音调映射)- 也遇到了有限的成功,因为tonotopic梯度不能用于唯一定位区域 A1的边界该研究的目标1将利用磁共振成像的最新进展 (MRI)以非侵入性方式获取前所未有的高分辨率体内人体解剖数据, 介观尺度(~0.35mm3),揭示了以前无法通过 神经成像获得这些信息将使我们能够生成详细的,数据驱动的听觉包裹, 与细胞结构更接近的皮质目标2将补充解剖学 方法在目标1通过定义A1在同一组个人,使用几个高场皮层和亚- 使用基于任务和功能连接范例的皮质功能激活测量。 基于任务的功能数据将用于为几个关键的感知相关 声学特征,其分割将受到静息状态连接模式的约束 皮层下和皮层区域之间的联系两个目标的工作,包括中观MRI,皮质下 神经成像,计算建模和静息状态连接,将结合起来,提供听觉 具有最先进的多模态结构-功能表征的原发性神经影像学社区 人类的听觉皮层为了帮助未来研究中听觉皮质特征的标准化, 这些资料将连同地图册沿着公布。长期目标是一个完整的 人类听觉皮层的表征和分割。在正常听力中产生的包裹 人群将作为表征和随后开发有效治疗方法的基线, 听力受损人群的听觉处理缺陷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily J Allen其他文献

Emily J Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 19.38万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了