Data Core
数据核心
基本信息
- 批准号:10729443
- 负责人:
- 金额:$ 71.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAutomatic Data ProcessingAwardBehavioralBig DataCellular PhoneClinicalClinical DataCodeCognitiveCommunitiesComputing MethodologiesConsultationsDataData AggregationData AnalysesData AnalyticsData CollectionData ProvenanceData ScientistData SetData Storage and RetrievalDecentralizationDevelopmentEnsureFutureGoalsInformation SystemsInfrastructureInternationalLearningLengthLibrariesLife Cycle StagesLocationLongitudinal StudiesLongitudinal, observational studyMachine LearningMeasurementMeasuresMeta-AnalysisMetadataMethodologyMonitorMovementMultiple SclerosisNoiseOutcome MeasureParkinson DiseaseParticipantPatient Outcomes AssessmentsPatient Self-ReportPatternPerformancePopulationProcessPsoriasisPsychometricsQuality ControlReportingReproducibilityReproducibility of ResultsResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesSamplingScienceScoring MethodServicesSpecific qualifier valueStatistical Data InterpretationStructureSurveysSynapsesSystemUnited States National Institutes of HealthValidationValidity and ReliabilityWorkcardiovascular healthcloud basedcognitive abilitycognitive changedata analysis pipelinedata cleaningdata managementdata pipelinedata repositorydata reusedata sharingdata standardsdensitydesigndirect applicationexperiencehigh standardinformantinnovationinterestlongitudinal analysismHealthmultidisciplinarynovelplatform as a servicerepositoryresearch studyresponsesleep qualitysocialsoftware as a servicesupervised learningsupport toolstoolvalidation studies
项目摘要
Data and Statistical Analysis Core Summary
The Data and Statistical Analysis Core (Data Core) will provide the data management and analytic support
tools needed throughout the Mobile Toolbox 2 initiative. We will provide a standard data processing pipeline and
centralized data storage center that documents the original data, as well as data provenance for derived scores,
metadata, and paradata regarding measure completion. These processes are necessary to ensure the
reproducibility of results arising from the Mobile Toolbox, as well as the reliability and validity of the measures.
The Data Core will support the Project by providing statistical and psychometric expertise in the development of
new measures and analysis of longitudinal observational studies. Further, the centralized repository developed
and maintained by the Data Core will be a key component of the Extension and Dissemination Core in their
efforts to disseminate data for secondary research purposes. The Mobile Toolbox system and data management
infrastructure was built as an extension of the Sage Synapse Data Platform, a cloud-based data storage and
organization system developed to facilitate sharing data, data analysis, and computational methods distributed
across research teams. The Data Core will be integral in serving the needs of Mobile Toolbox 2. The primary
aims of the core include: Aim 1: Conduct statistical analysis and methodological consultation services for
the Mobile Toolbox; Aim 2: Extend and maintain a central repository for data aggregation, curation, and
dissemination; and Aim 3: Create a learning system to assist in the deployment, design, and execution
of remote studies. The Data Core will manage and conduct analyses needed for psychometric validation and
norming of any new measures identified for inclusion in the Mobile Toolbox assessment library through the
scientific community-engaged approach utilized within the Project. We will develop new normative values and
conduct multi-pronged validation analyses as warranted within diverse and representative samples. This work
will be performed by the team of statisticians and psychometricians responsible for norming and validating the
NIH Toolbox®, Patient Reported Outcome Measurement Information System®, and International Cognitive Ability
Resource. The Data Core will ensure that any new measures can be included within the automated data
processing pipeline, including ensuring that the measures are well-defined using JSON schemas so that the data
are self-describing. This allows the data to be seamlessly integrated into the centralized data repository. Further,
this repository allows data aggregation across studies, supporting novel and innovative “big data” approaches.
The Data Core will enable learning systems to aggregate data and implement unsupervised and semi-supervised
machine learning approaches across studies.
数据和统计分析核心摘要
数据和统计分析核心(数据核心)将提供数据管理和分析支持
整个移动的物联网2计划所需的工具。我们将提供标准的数据处理管道,
集中式数据存储中心,其记录原始数据,以及导出分数的数据出处,
元数据和关于度量完成的parameters。这些过程对于确保
从移动的测量中产生的结果的再现性,以及测量的可靠性和有效性。
数据核心将通过提供统计和心理测量专业知识来支持该项目,
纵向观察研究的新措施和分析。此外,中央储存库还开发了
并由数据核心维护,将是扩展和传播核心的关键组成部分,
努力传播用于二级研究目的的数据。移动的数据管理系统
基础设施是作为Sage Synapse数据平台的扩展而构建的,该平台是一种基于云的数据存储和
一种组织系统,用于促进数据共享、数据分析和分布式计算方法
跨研究团队。数据核心将是满足移动的物联网2需求不可或缺的一部分。主
核心目标包括:目标1:进行统计分析和方法咨询服务,
移动的数据库;目标2:扩展和维护用于数据聚合、管理和
目标3:创建一个学习系统,以协助部署、设计和执行
远程学习。数据核心将管理和进行心理测量验证所需的分析,
规范任何新的措施,确定纳入移动的可持续发展评估库,通过
在项目中使用的科学社区参与方法。我们将发展新的规范价值观,
在不同的和有代表性的样品中进行多方面的验证分析。这项工作
将由负责规范和验证
美国国立卫生研究院,患者报告的结果测量信息系统,和国际认知能力
Resource.数据核心将确保任何新的措施都可以包括在自动化数据中
处理管道,包括确保使用JSON模式良好定义度量,以便数据
是自我描述的。这允许数据无缝集成到集中式数据存储库中。此外,本发明还
这一数据库允许汇总各项研究的数据,支持新颖和创新的“大数据”方法。
Data Core将使学习系统能够聚合数据并实现无监督和半监督
跨研究的机器学习方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron James Kaat其他文献
Aaron James Kaat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}