Optimizing blood biopsy in cancers with low mutation burden and high structural complexity
优化突变负荷低、结构复杂性高的癌症的血液活检
基本信息
- 批准号:10789700
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlgorithmsAnimal Disease ModelsAnimal ModelBiological AssayBiological ModelsBiopsyBloodCancer DetectionCancer ModelCanis familiarisCellsCharacteristicsCirculationClinicalCombined Modality TherapyComplexCopy Number PolymorphismDNADNA MethylationDNA methylation profilingDataData SetDetectionDevelopmentDiagnosisDiseaseDisease ProgressionDrug ExposureDrug resistanceEarly DiagnosisEarly InterventionEarly identificationEnrollmentEpigenetic ProcessEvaluationEwings sarcomaExcisionFDA approvedGene ExpressionGene Expression AlterationGenesGenomeGenomicsGoalsHistologicHumanImageIncidenceIndividualMPP2 geneMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMeasuresMethodologyMethodsMethylationMonitorMutationNatureNeoadjuvant TherapyNeoplasm MetastasisOutcomePatient CarePatientsPatternPlasmaPrimary NeoplasmPrior TherapyProspective StudiesRNARecurrenceRegimenRelapseResistanceRhabdomyosarcomaSamplingScientistSensitivity and SpecificitySomatic MutationTechniquesTestingTherapeuticTimeTissuesTranscriptTreatment ProtocolsTumor BurdenTumor TissueVariantWorkbiobankcancer cellcancer diagnosiscancer genomecell free DNAcirculating DNAclinical decision-makingclinical diagnosticsdata integrationdesigndifferential expressionexperiencegenome sequencinghuman modelimmunoregulationimplementation facilitationimprovedindividualized medicineliquid biopsylung metastaticmachine learning algorithmmalignant breast neoplasmmethylation patternmolecular markerneoplastic cellnovelosteosarcomaprospectiverapid detectionresponsesarcomaskillstherapy resistanttooltranscriptome sequencingtranscriptomicstranslational medicinetreatment optimizationtreatment responsetumortumor DNAtumor microenvironmentwhole genome
项目摘要
PROJECT SUMMARY
Liquid biopsy is a non-invasive technique that can be used to help diagnose and monitor cancer. It is based on
the principle that tumor cells release small pieces of DNA and RNA into circulation. In several human cancers,
FDA-approved liquid biopsy tests are designed to look for common disease-associated mutations. These liquid
biopsy tests are most successful in tumors with a well-defined mutation landscape, such as lung and breast
cancer. However, looking for common mutations is less successful in structurally complex tumors with a lower
incidence of mutations, as is the case with many sarcomas, such as osteosarcoma (OS) and Ewing’s sarcoma.
Recent data indicate that mutation-independent liquid biopsy techniques, including assessment of circulating
DNA fragment size patterns and methylation status, can increase sensitivity of the assay and identify the tissue
of origin and histologic subtype of human cancers. Additionally, evidence now suggests that unique gene
expression and methylation signatures measured by liquid biopsy have the potential to act as a surrogate for
response to treatment and/or identify early emergence of treatment resistance. As such, there is potential for
using an advance liquid biopsy tool to inform patient-specific therapies more effectively, particularly in instances
where repeat imaging/tumor sampling is challenging. As such, the hypothesis underlying this proposal is that
gene expression and epigenetic metastatic signatures can be identified in RNA and DNA isolated from
plasma in canine OS and integrated using machine learning to improve the sensitivity of liquid biopsy.
It is further predicted that this improved liquid biopsy platform will be capable of identifying treatment
specific signatures reflective of response or resistance to therapy. We will use canine OS, which has a
structurally chaotic tumor genome, as a large animal disease model of human sarcomas. Using patient-matched
plasma samples from dogs with OS taken at multiple timepoints throughout treatment, we will evaluate cell-free
DNA and RNA using a comprehensive mutation-independent liquid biopsy assay. This will incorporate evaluation
multiple parameters, including cell-free DNA fragment sizes, methylation, and gene expression alterations and
use machine learning to optimize parameter integration. The liquid biopsy tool will be further validated for
detection of early disease progression in OS patients. Lastly, we will begin to dissect how drug exposure alters
disease-specific signatures in circulation. Ultimately, the tools and techniques developed from this work will have
broad applicability to both canine and human sarcomas, facilitating enhanced accuracy for cancer detection and
clinical decision-making. Importantly, the work outlined in this proposal provides a unique opportunity for
expansion of genomic skill sets in the context of translational medicine, thereby further supporting my
development as a successful independent clinician scientist.
项目摘要
液体活检是一种非侵入性技术,可用于帮助诊断和监测癌症。它是基于
肿瘤细胞释放小片段DNA和RNA进入循环的原理。在几种人类癌症中,
FDA批准的液体活检测试旨在寻找常见的疾病相关突变。这些液体
活检测试在具有明确突变景观的肿瘤中最成功,例如肺和乳腺
癌然而,寻找常见突变在结构复杂的肿瘤中不太成功,
突变的发生率,如许多肉瘤的情况,如骨肉瘤(OS)和尤文氏肉瘤。
最近的数据表明,不依赖于突变的液体活检技术,包括评估循环中的
DNA片段大小模式和甲基化状态可以增加测定的灵敏度并鉴定组织
人类癌症的起源和组织学亚型。此外,现在的证据表明,独特的基因
通过液体活检测量的表达和甲基化特征有可能作为一种替代物,
对治疗的反应和/或识别治疗抗性的早期出现。因此,有可能
使用先进的液体活检工具更有效地告知患者特异性治疗,特别是在
其中重复成像/肿瘤取样是具有挑战性的。因此,这一提议的假设是,
基因表达和表观遗传转移标记可以在从肿瘤组织中分离的RNA和DNA中鉴定。
血浆中的犬OS和集成使用机器学习,以提高液体活检的灵敏度。
进一步预测,这种改进的液体活检平台将能够识别治疗
反映对治疗的反应或抵抗的特定特征。我们将使用犬操作系统,它有一个
结构混乱的肿瘤基因组,作为人类肉瘤的大型动物疾病模型。使用患者匹配
在整个治疗过程中的多个时间点采集的OS犬血浆样本,我们将评估无细胞
使用全面的突变独立液体活检检测DNA和RNA。这将包括评价
多个参数,包括游离DNA片段大小、甲基化和基因表达改变,
使用机器学习来优化参数集成。将进一步确认液体活检工具,
检测OS患者的早期疾病进展。最后,我们将开始剖析药物暴露如何改变
疾病特异性信号最终,从这项工作中开发的工具和技术将具有
广泛适用于犬和人类肉瘤,有助于提高癌症检测的准确性,
临床决策。重要的是,本提案中概述的工作提供了一个独特的机会,
在转化医学的背景下扩展基因组技能,从而进一步支持我的研究。
成为一名成功的独立临床科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Lynn Gardner其他文献
Heather Lynn Gardner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Lynn Gardner', 18)}}的其他基金
Elucidating the therapeutic utility of targeting metabolic dependencies in osteosarcoma
阐明针对骨肉瘤代谢依赖性的治疗效用
- 批准号:
10578687 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Elucidating the therapeutic utility of targeting metabolic dependencies in osteosarcoma
阐明针对骨肉瘤代谢依赖性的治疗效用
- 批准号:
10360455 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Elucidating the therapeutic utility of targeting metabolic dependencies in osteosarcoma
阐明针对骨肉瘤代谢依赖性的治疗效用
- 批准号:
9975390 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant