Computer Simulation of Acute Coronary Syndrome Care in the Emergency Department

急诊科急性冠脉综合征护理的计算机模拟

基本信息

  • 批准号:
    7659178
  • 负责人:
  • 金额:
    $ 21.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-10 至 2011-03-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The primary objective of this study is to use queuing theory - the study of waiting lines - and computer simulation, to determine how tight coupling between hospitals and emergency departments (ED) affects time-critical cardiac care in the ED. The study aims to explain how variability in the demand for ED and hospital resources creates service delays (radiology, laboratory, and consults) and bottlenecks in patient flow, and how these factors lead to performance errors in the diagnosis and treatment of patients suspected of having acute coronary syndrome (ACS). ACS is an umbrella term that includes all clinical findings consistent with acute myocardial ischemia. Because delays in delivery of evidence-based care affects outcome in ACS, this study will define performance errors as avoidable delays in care delivery. Chest pain prompts over 5.3 million ED visits and more than 1 million hospitalizations annually for acute myocardial infarction (AMI), the leading cause of death in the U.S., often occurring before the patient is admitted to the hospital. ACS is a strong predictor of future AMI, and clinical research has shown that rapid risk stratification and timely treatment are critical to favorable outcomes in ACS patients. The American College of Cardiology (ACC), the American Heart Association (AHA), and others have developed and endorsed practice guidelines for ACS, many of which emphasize the temporal dimension of care. Despite growing clinical evidence supporting these guidelines, many EDs fail to meet these evidence-based standards. [The study hypothesis is that wait time distributions associated with ACS quality indicators (QI) are influenced more by artificial (i.e., man-made) variability in ED and hospital work processes than by natural variability in ED patient arrivals and clinical factors. This project will use a retrospective cohort study of adult patients admitted to the ED with suspected ACS. The specific aims are to: 1) Recreate the time-course of ED care for all suspected ACS patients during a 35-month period; 2) Use system queuing metrics to characterize concurrent demands placed on ED and hospital system resources during each discrete episode of ACS patient care; 3) Use Cox proportional hazards regression to model the effects of patient characteristics (i.e., clinical and demographic), ancillary service utilization (e.g., ECG), staffing provisions, and system queuing metrics characterizing ED and hospital patient flow on time-dependent ACS QIs; 4) Develop and validate an evidence-based discrete-event simulation (DES) model of the hospital cardiac care system to advance our understanding of ACS performance errors and to facilitate predictive (i.e., "what if") analyses of clinical improvements aimed at eliminating errors and delays. A Cox model will be developed for each ACS process interval (i.e., time to event). These models will be programmed as functions into the applicable DES entity (i.e., patient, lab, X-ray, etc) flow logic to compute wait-time distributions for each care process interval (ED arrival-to-ECG, etc). The simulation methodology will be used to prospectively test system interventions designed to improve the timeliness of cardiac care in the ED]. Public Health Relevance: This project is relevant to public health because it aims to identify hospital system barriers that hinder or prevent emergency department (ED) clinicians from adhering to evidence-based practice guidelines for acute coronary syndrome. A major component of the research will focus on the impact of ED crowding, a national but understudied problem, on emergency cardiac care. The research is innovative because it will use system engineering tools to complement conventional statistical methods in modeling complex dynamic interactions between patients and the healthcare care system.
描述(申请人提供):本研究的主要目的是利用排队论--排队的研究--和计算机模拟,以确定医院和急诊科(艾德)之间的紧密耦合如何影响急诊室的时间关键型心脏病护理。本研究旨在解释艾德和医院资源需求的变化如何造成服务延误(放射学、实验室和会诊)和患者流中的瓶颈,以及这些因素如何导致疑似患有急性冠状动脉综合征(ACS)的患者的诊断和治疗中的性能错误。ACS是一个涵盖性术语,包括与急性心肌缺血一致的所有临床表现。由于循证护理的延迟会影响ACS的结局,因此本研究将绩效错误定义为可避免的护理延迟。胸痛促使每年超过530万艾德就诊和超过100万次急性心肌梗死(AMI)住院,AMI是美国的主要死亡原因,通常发生在患者入院之前。ACS是未来AMI的一个强有力的预测因子,临床研究表明,快速的危险分层和及时的治疗对ACS患者的良好结局至关重要。美国心脏病学会(ACC)、美国心脏协会(AHA)和其他组织已经制定并认可了ACS的实践指南,其中许多指南强调了护理的时间维度。尽管越来越多的临床证据支持这些指南,但许多ED未能达到这些循证标准。[The研究假设是与ACS质量指标(QI)相关联的等待时间分布更多地受人为(即,与艾德患者到达和临床因素的自然变化相比,在艾德和医院工作过程中的人为)变化。本项目将对因疑似ACS入住艾德的成人患者进行回顾性队列研究。具体目标是:1)在35个月期间为所有疑似ACS患者重建艾德护理的时间过程; 2)使用系统排队度量来表征在ACS患者护理的每个离散事件期间对艾德和医院系统资源的并发需求; 3)使用考克斯比例风险回归来模拟患者特征的影响(即,临床和人口统计学),辅助服务利用(例如,ECG)、人员配备和系统排队度量,表征艾德和医院患者在时间依赖性ACS QIs上的流量; 4)开发和验证医院心脏护理系统的基于证据的离散事件模拟(DES)模型,以促进我们对ACS性能错误的理解,并促进预测(即,“如果”)分析旨在消除错误和延迟的临床改进。将为每个ACS过程间隔开发考克斯模型(即,事件发生时间)。这些模型将作为功能编程到适用的DES实体中(即,患者、实验室、X射线等)流逻辑,以计算每个护理过程间隔(艾德到达ECG等)的等待时间分布。模拟方法将用于前瞻性测试旨在改善艾德心脏护理及时性的系统干预。公共卫生相关性:该项目与公共卫生相关,因为它旨在确定阻碍或阻止急诊科(艾德)临床医生遵守急性冠状动脉综合征循证实践指南的医院系统障碍。研究的一个主要组成部分将集中在艾德拥挤的影响,一个全国性的,但研究不足的问题,对紧急心脏护理。该研究具有创新性,因为它将使用系统工程工具来补充传统的统计方法,以模拟患者与医疗保健系统之间复杂的动态相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIEL Joseph FRANCE其他文献

DANIEL Joseph FRANCE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIEL Joseph FRANCE', 18)}}的其他基金

Measuring NICU Nurse Practitioner Workload in Real-time to Improve Care Quality and Patient Safety
实时测量 NICU 护士从业人员的工作量,以提高护理质量和患者安全
  • 批准号:
    10736277
  • 财政年份:
    2023
  • 资助金额:
    $ 21.05万
  • 项目类别:
Realtime Measurement of Situational Workload in NICU Nurses to Improve Workload Management and Patient Safety
实时测量 NICU 护士的工作量,以改善工作量管理和患者安全
  • 批准号:
    10611477
  • 财政年份:
    2022
  • 资助金额:
    $ 21.05万
  • 项目类别:
Realtime Measurement of Situational Workload in NICU Nurses to Improve Workload Management and Patient Safety
实时测量 NICU 护士的工作量,以改善工作量管理和患者安全
  • 批准号:
    10444476
  • 财政年份:
    2022
  • 资助金额:
    $ 21.05万
  • 项目类别:
Cancer Patient Safety Learning Laboratory (CaPSLL): Preventing Clinical Deterioration in Outpatients
癌症患者安全学习实验室 (CaPSLL):防止门诊患者临床恶化
  • 批准号:
    10254301
  • 财政年份:
    2018
  • 资助金额:
    $ 21.05万
  • 项目类别:
Computer Simulation of Acute Coronary Syndrome Care in the Emergency Department
急诊科急性冠脉综合征护理的计算机模拟
  • 批准号:
    7800874
  • 财政年份:
    2009
  • 资助金额:
    $ 21.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了