Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen Fixation
生物固氮中的能量转换和底物激活机制
基本信息
- 批准号:10795182
- 负责人:
- 金额:$ 5.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisActive SitesAgricultureAmmoniaAtmosphereBindingBiochemicalBiologicalBiological AvailabilityBiological ModelsBiological ProductsBiophysicsCatalysisCell physiologyChemicalsComplexCouplesCryoelectron MicroscopyDevelopmentEnzymesGuanosine TriphosphateHealthHumanInvestigationMapsMetabolismMetalsMethodologyMolecular ConformationNitrogen FixationNitrogenaseNucleotidesNutritionalOxidation-ReductionPersonsPopulationProcessProtein DynamicsReactionResearchResolutionenzyme modelexperimental studymetalloenzymeprogramssmall moleculewelfare
项目摘要
PROJECT SUMMARY/ABSTRACT
This proposal aims to elucidate how the bacterial metalloenzyme nitrogenase catalyzes the
chemically difficult transformation of atmospheric dinitrogen into a bioavailable form, ammonia,
and why/how it utilizes ATP hydrolysis to drive this reaction. Being the only enzyme responsible
for reductive nitrogen fixation, nitrogenase sustains the agricultural/nutritional needs of ~40% of
the human population. Aside from its global importance, nitrogenase is a unique model system
with broad relevance to biological redox catalysis as well as ATP/GTP-dependent energy
transduction processes, which are both central to proper cellular functioning and thus directly
relevant to human health.
Despite nearly five decades of extensive biochemical, biophysical, and structural
characterization, the two most important questions about nitrogenase mechanism have not
been answered in detail: a) Why and how ATP hydrolysis is ultimately utilized for the reduction
of N2 or alternative substrates? b) What is the intimate mechanism of dinitrogen reduction on the
nitrogenase active site metal cluster, FeMoco? The major experimental challenge in the
investigations of nitrogenase arises from the fact that the catalytic activity of nitrogenase
depends on continuous ATP turnover, which leads to a heterogeneous mixture of redox and
nucleotide-bound states of nitrogenase that are difficult to distinguish from one another. To
circumvent this challenge, we have initiated a research program in cryogenic electron
microscopy (cryoEM) to structurally characterize dynamic states of nitrogenase at atomic
resolution under enzymatic turnover conditions. Preliminary experiments have not only
established the feasibility of this approach but also revealed unexpected structural features of
nitrogenase which have fueled new mechanistic hypotheses. In the proposed project, we aim to
build upon on these preliminary findings by a) mapping the ATP-driven conformational
landscape of nitrogenase in unprecedented detail under catalytic turnover conditions and b)
elucidating FeMoco structural dynamics and FeMoco-small molecule interactions in atomic
resolution, while also c) contributing to the development of cutting-edge cryoEM methodologies
for the structural interrogation of highly complex/dynamic protein assemblies and
metallocofactors.
项目总结/摘要
该建议旨在阐明细菌金属酶固氮酶如何催化
化学上很难将大气中的二氮转化为生物可利用的形式,氨,
以及它为什么/如何利用ATP水解来驱动这个反应。作为唯一的酶
对于还原性固氮,固氮酶维持约40%的农业/营养需求。
人类人口。除了它的全球重要性,固氮酶是一个独特的模式系统
与生物氧化还原催化以及ATP/GTP依赖的能量具有广泛的相关性
转导过程,这两者都是中央适当的细胞功能,从而直接
与人类健康有关。
尽管近50年来广泛的生物化学,生物物理和结构,
表征,关于固氮酶机制的两个最重要的问题还没有
详细回答:a)为什么以及如何ATP水解最终用于还原
N2或替代底物?B)在反应过程中,
固氮酶活性中心金属簇,FeMoco?实验中的主要挑战是
固氮酶的研究源于固氮酶的催化活性
依赖于连续的ATP周转,这导致了氧化还原和
固氮酶的核苷酸结合状态,难以彼此区分。到
为了克服这一挑战,我们已经启动了一项低温电子研究计划,
cryoEM),以在原子水平上表征固氮酶的动态结构
在酶促周转条件下拆分。初步实验不仅
建立了这种方法的可行性,但也揭示了意想不到的结构特征,
固氮酶,这激发了新的机制假说。在建议的项目中,我们的目标是
在这些初步发现的基础上,通过a)绘制ATP驱动的构象
在催化转化条件下固氮酶前所未有细节景观和B)
阐明FeMoco结构动力学和原子中FeMoco-小分子相互作用
分辨率,同时c)有助于开发尖端的cryoEM方法
用于高度复杂/动态蛋白质组装的结构询问,
金属辅因子
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Faik Akif Tezcan其他文献
Faik Akif Tezcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Faik Akif Tezcan', 18)}}的其他基金
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen Fixation
生物固氮中的能量转换和底物激活机制
- 批准号:
10566582 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
- 批准号:
10221740 - 财政年份:2020
- 资助金额:
$ 5.95万 - 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
- 批准号:
10033233 - 财政年份:2020
- 资助金额:
$ 5.95万 - 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
- 批准号:
10387560 - 财政年份:2020
- 资助金额:
$ 5.95万 - 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
- 批准号:
10413065 - 财政年份:2020
- 资助金额:
$ 5.95万 - 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
- 批准号:
10645201 - 财政年份:2020
- 资助金额:
$ 5.95万 - 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
- 批准号:
8645652 - 财政年份:2012
- 资助金额:
$ 5.95万 - 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
- 批准号:
8217963 - 财政年份:2012
- 资助金额:
$ 5.95万 - 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
- 批准号:
8516536 - 财政年份:2012
- 资助金额:
$ 5.95万 - 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
- 批准号:
8839784 - 财政年份:2012
- 资助金额:
$ 5.95万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 5.95万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




