Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen Fixation

生物固氮中的能量转换和底物激活机制

基本信息

  • 批准号:
    10795182
  • 负责人:
  • 金额:
    $ 5.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT This proposal aims to elucidate how the bacterial metalloenzyme nitrogenase catalyzes the chemically difficult transformation of atmospheric dinitrogen into a bioavailable form, ammonia, and why/how it utilizes ATP hydrolysis to drive this reaction. Being the only enzyme responsible for reductive nitrogen fixation, nitrogenase sustains the agricultural/nutritional needs of ~40% of the human population. Aside from its global importance, nitrogenase is a unique model system with broad relevance to biological redox catalysis as well as ATP/GTP-dependent energy transduction processes, which are both central to proper cellular functioning and thus directly relevant to human health. Despite nearly five decades of extensive biochemical, biophysical, and structural characterization, the two most important questions about nitrogenase mechanism have not been answered in detail: a) Why and how ATP hydrolysis is ultimately utilized for the reduction of N2 or alternative substrates? b) What is the intimate mechanism of dinitrogen reduction on the nitrogenase active site metal cluster, FeMoco? The major experimental challenge in the investigations of nitrogenase arises from the fact that the catalytic activity of nitrogenase depends on continuous ATP turnover, which leads to a heterogeneous mixture of redox and nucleotide-bound states of nitrogenase that are difficult to distinguish from one another. To circumvent this challenge, we have initiated a research program in cryogenic electron microscopy (cryoEM) to structurally characterize dynamic states of nitrogenase at atomic resolution under enzymatic turnover conditions. Preliminary experiments have not only established the feasibility of this approach but also revealed unexpected structural features of nitrogenase which have fueled new mechanistic hypotheses. In the proposed project, we aim to build upon on these preliminary findings by a) mapping the ATP-driven conformational landscape of nitrogenase in unprecedented detail under catalytic turnover conditions and b) elucidating FeMoco structural dynamics and FeMoco-small molecule interactions in atomic resolution, while also c) contributing to the development of cutting-edge cryoEM methodologies for the structural interrogation of highly complex/dynamic protein assemblies and metallocofactors.
项目摘要/摘要 这项建议旨在阐明细菌金属酶固氮酶是如何催化 在化学上困难地将大气中的氮素转化为生物可利用的形式氨, 以及它为什么/如何利用ATP水解来推动这一反应。是唯一负责的酶 对于还原固氮,固氮酶维持着约40%的农业/营养需求 人类人口。固氮酶除了具有全球重要性外,还是一种独特的模式系统 与生物氧化还原催化以及ATP/GTP依赖的能量广泛相关 转导过程,这两个过程都是正常细胞功能的中心,因此直接 与人类健康相关。 尽管近50年来广泛的生化、生物物理和结构 关于固氮酶机理的两个最重要的问题 详细回答:a)为什么以及如何最终利用ATP水解物进行还原 是氮气还是替代底物?B)氮素还原的密切机制是什么? 固氮酶活性中心金属簇,FeMoco?实验中的主要挑战是 固氮酶的研究源于固氮酶的催化活性 依赖于持续的ATP周转,这导致了氧化还原和 很难相互区分的固氮酶的核苷酸结合状态。至 绕过这一挑战,我们启动了一项研究低温电子的计划 原子级固氮酶动态结构表征的显微(低温电子显微镜) 酶促转换条件下的拆分。初步实验不仅 确定了此方法的可行性,但也揭示了 固氮酶引发了新的机械论假说。在建议的项目中,我们的目标是 在这些初步发现的基础上,通过a)绘制ATP驱动的构象 在催化周转条件下,固氮酶的景观以前所未有的细节和b) 原子中FeMoco结构动力学及FeMoco与小分子相互作用的研究 决议,同时也有助于开发尖端的低温EM方法 用于高度复杂/动态的蛋白质组件的结构询问和 金属辅因子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Faik Akif Tezcan其他文献

Faik Akif Tezcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Faik Akif Tezcan', 18)}}的其他基金

Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen Fixation
生物固氮中的能量转换和底物激活机制
  • 批准号:
    10566582
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
  • 批准号:
    10221740
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
  • 批准号:
    10033233
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
  • 批准号:
    10387560
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
  • 批准号:
    10413065
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
Design and Evolution of Metal-Based Functions in Supramolecular Protein Scaffolds
超分子蛋白支架中金属基功能的设计与演化
  • 批准号:
    10645201
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8645652
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8217963
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8516536
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8839784
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了