Mechanistic insight into oxidative stress-mediated genome instability

氧化应激介导的基因组不稳定性的机制见解

基本信息

  • 批准号:
    10796464
  • 负责人:
  • 金额:
    $ 6.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Mechanistic insight into oxidative stress-mediated genomic instability Parent award: R35GM142982 ABSTRACT Genome instability is characterized by genetic alterations that include DNA base mutations, chromosome breaks, rearrangements and instability, hallmarks of various human diseases including cancer. Chromosome instability (CIN) that results from inaccurate chromosomal segregation, originates from telomere and centromere dysfunctions. Numerous epidemiologic studies have highlighted the central role of oxidative stress exposures in the occurrence of telomere and centromere dysfunction. Critically, however, the mechanisms underlying the dysfunction are not clearly understood. Oxidative stress results from an imbalance between the production of reactive oxygen species and cellular antioxidant defenses. It arises from endogenous sources as well as from environmental sources (mitochondria metabolism, UV light, air pollution, cigarette smoke). Its ubiquity highlights the importance of properly understanding its impacts on human health. A major impact of oxidative stress is the induction of oxidative DNA damage that are repaired by the base excision repair (BER) pathway in which poly(ADP-ribose) polymerases (PARPs) are major actors. PARP1 and PARP2 are responsible for the poly(ADP- ribosyl)ation, a post-translational modification of proteins that modulates the recruitment and interactions of their protein targets. The goals of this proposal are to (i) uncover the mechanisms of oxidative stress-mediated genome instability with a focus on its impact on telomeres and centromeres, two genomic loci crucial for genome stability and (ii) decipher the contribution of PARP enzymes in the protection of telomeric and centromeric DNA upon oxidative DNA damage. To this end, we are leveraging a unique and innovative chemoptogenetic tool that induces oxidative DNA damage locally at telomeres and at centromeres without impacting the rest of the genome. This will allow us to unequivocally link phenotypic changes and PARP dependent mechanisms to the telomeric or centromeric lesions. These projects aim to fill a long-standing gap of knowledge on how poly(ADP- ribosyl)ation orchestrates DNA repair at two crucial regions of the genome. They will also shed light on how oxidative stress, an ubiquitous factor of genome instability, can drive numerous human diseases. Ultimately, our work will contribute to the development of novel therapeutic strategies targeting specific regions of the genome and inform the rational design and use of the PARP inhibitors already widely used in cancer treatments.
氧化应激介导的基因组不稳定性的机制见解 家长奖:R35GM142982 抽象的 基因组不稳定的特征是遗传改变,包括 DNA 碱基突变、染色体断裂、 重排和不稳定是包括癌症在内的各种人类疾病的特征。染色体不稳定 (CIN) 由不准确的染色体分离引起,起源于端粒和着丝粒 功能障碍。大量流行病学研究强调了氧化应激暴露在疾病中的核心作用。 端粒和着丝粒功能障碍的发生。然而,至关重要的是,其背后的机制 功能障碍尚不清楚。氧化应激是由于氧化应激产生的不平衡造成的 活性氧和细胞抗氧化防御。它既有内源性的来源,也有外源性的来源。 环境来源(线粒体代谢、紫外线、空气污染、香烟烟雾)。它的无处不在凸显 正确理解其对人类健康影响的重要性。氧化应激的一个主要影响是 诱导氧化 DNA 损伤,通过碱基切除修复 (BER) 途径进行修复,其中 聚(ADP-核糖)聚合酶(PARP)是主要参与者。 PARP1 和 PARP2 负责聚(ADP- 核糖基化,蛋白质的翻译后修饰,调节其招募和相互作用 蛋白质靶标。该提案的目标是(i)揭示氧化应激介导的机制 基因组不稳定性,重点关注其对端粒和着丝粒的影响,这两个基因座对基因组至关重要 (ii) 破译 PARP 酶在保护端粒和着丝粒 DNA 方面的贡献 DNA 氧化损伤时。为此,我们正在利用一种独特且创新的化学光遗传学工具 在端粒和着丝粒处局部诱导氧化 DNA 损伤,而不影响其余部分 基因组。这将使我们能够明确地将表型变化和 PARP 依赖机制与 端粒或着丝粒损伤。这些项目旨在填补关于聚(ADP- 核糖基化在基因组的两个关键区域协调 DNA 修复。他们还将阐明如何 氧化应激是基因组不稳定的普遍因素,可导致多种人类疾病。最终,我们的 工作将有助于开发针对基因组特定区域的新型治疗策略 并为已广泛用于癌症治疗的 PARP 抑制剂的合理设计和使用提供信息。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular mechanisms protecting centromeres from self-sabotage and implications for cancer therapy.
  • DOI:
    10.1093/narcan/zcad019
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elise Fouquerel其他文献

Elise Fouquerel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elise Fouquerel', 18)}}的其他基金

Mechanistic insight into oxidative stress-mediated genome instability
氧化应激介导的基因组不稳定性的机制见解
  • 批准号:
    10663882
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
Mechanistic insight into oxidative stress-mediated genome instability
氧化应激介导的基因组不稳定性的机制见解
  • 批准号:
    10456916
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
Mechanistic insight into oxidative stress-mediated genome instability
氧化应激介导的基因组不稳定性的机制见解
  • 批准号:
    10570425
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
Mechanistic insight into oxidative stress-mediated genome instability
氧化应激介导的基因组不稳定性的机制见解
  • 批准号:
    10276407
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
Deciphering the mechanisms of PARP1 activity in telomere integrity
破译 PARP1 活性在端粒完整性中的机制
  • 批准号:
    10094058
  • 财政年份:
    2019
  • 资助金额:
    $ 6.33万
  • 项目类别:
Deciphering the mechanisms of PARP1 activity in telomere integrity
破译 PARP1 活性在端粒完整性中的机制
  • 批准号:
    9162835
  • 财政年份:
    2016
  • 资助金额:
    $ 6.33万
  • 项目类别:
Deciphering the mechanisms of PARP1 activity in telomere integrity
破译 PARP1 活性在端粒完整性中的机制
  • 批准号:
    9320953
  • 财政年份:
    2016
  • 资助金额:
    $ 6.33万
  • 项目类别:

相似海外基金

Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
  • 批准号:
    24K18002
  • 财政年份:
    2024
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
  • 批准号:
    2222215
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
  • 批准号:
    23K09272
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
  • 批准号:
    10652764
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
  • 批准号:
    10730652
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
  • 批准号:
    22K11609
  • 财政年份:
    2022
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
  • 批准号:
    22K16720
  • 财政年份:
    2022
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
  • 批准号:
    RGPIN-2018-04107
  • 财政年份:
    2022
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
  • 批准号:
    RGPIN-2019-05674
  • 财政年份:
    2022
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
  • 批准号:
    22K12824
  • 财政年份:
    2022
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了