Establishing a consensus-based definition of air medical transport need for rural patients after injury
建立基于共识的农村患者受伤后航空医疗运输需求定义
基本信息
- 批准号:10811026
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AirAlgorithmsAmbulancesBlood TransfusionCaringConsensusDataDecision MakingDisparityEmergency MedicineEmergency medical serviceEmergency responseFaceFeedbackFeesFinancial HardshipFutureGeographyGoalsGuidelinesHealthcare SystemsHelicopterHospitalsHourInjuryInterventionLifeLiteratureMeasuresMedicalMedical emergencyMethodologyMethodsMinorOnline SystemsOutcomeOutcome AssessmentPatient-Focused OutcomesPatientsPatternPersonsPhysiologyPre-hospitalization careRegistriesResearchResourcesRiskRuralRural PopulationSafetyStandardizationSurveysSystemTimeTraumaTrauma patientTriageValidationVariantWorkcare deliverycostdata registrydisparity reductionevidence baseexperiencefirst responderhigh riskimprovedimproved outcomeinjuredinnovationmeetingsmortality riskmultidisciplinarynovelpatient orientedpatient safetypatient subsetspreservationprospectiverecruitrural Americarural Americansrural arearural patientssevere injurytooltrauma caretrauma centersunderserved rural area
项目摘要
PROJECT ABSTRACT
Patients injured in rural America are more likely to die than their urban counterparts. This is due in part to poor
access to specialized care such as regional trauma centers, and rural patients are more likely to be taken to a
non-trauma center as a result. For rural patients, air medical transport (AMT) by helicopter is the only way to
get timely access to life-saving trauma care because of poor geographic access to trauma centers. AMT brings
life-saving care otherwise unavailable from ground ambulances to the patient even before reaching a trauma
center and gets the patient to definitive care at a trauma center faster. AMT when used appropriately can
mitigate this under-triage and save lives after injury. In remote rural regions, use of AMT may also preserve
local emergency response resources for other patients. Unnecessary use of AMT – over-triage – occurs in up
to 60% of helicopter flights for patients with only minor injuries and is also more common in rural areas. A
major driver of this inaccurate triage for AMT is the lack of a standardize definition of what patients and/or
circumstances warrant the use of AMT, reflected in significant variation in the measures used in prior literature
for appropriate AMT. This makes it impossible to compared or build on prior work, representing a critical barrier
to improving air medical triage of rural patients. Inaccurate AMT triage disproportionally impacts patients in
underserved rural areas and has serious negative consequences: Under-triage of rural patients increases the
risk of death by not transporting them to a facility that can treat their injuries. Over-triage, unnecessary AMT,
increases cost, makes this scarce resource unavailable for other patients that need it, and increases risk to the
patient and the crew. AMT crashes are a serious safety issue with a third of crashes experiencing a fatality
compared to just 1% of ground ambulance crashes, an avoidable risk if the flight is unnecessary. Further, AMT
fees are over $10,000 per transport, creating a significant financial burden for patients and healthcare systems.
This proposal seeks to develop the first definition of AMT need after injury through consensus from multiple
diverse perspectives with experts in prehospital trauma care and regionalized care delivery. This project will
then validate the definition using actual patient outcomes. In Aim 1 we will use web-based real-time modified
Delphi methods to develop a consensus definition of criteria that warrant AMT after trauma. In Aim 2 we will
assess the multiple aspects of validity for our consensus definition of AMT need. We will solicit feedback from
rural EMS professionals to assess face validity and refine the definition. We will then assess criterion validity
by applying the definition to patients in a state trauma registry to assess outcomes among those that do and do
not meet the definition. This proposal is foundational to developing evidence-based air medical triage
guidelines and will inform future work using this consensus definition to prospectively validate, implement, and
pilot an air medical triage algorithm. Successful completion will improve outcomes and trauma care value,
reducing the disparities after injury in rural America by getting the right patients the right care at the right time.
项目摘要
在美国农村受伤的患者比城市患者更有可能死亡。这在一定程度上是由于贫穷。
获得区域创伤中心等专门护理的机会,农村患者更有可能被带到
结果就是非创伤中心。对于农村患者,直升机空中医疗运输(AMT)是唯一的途径
由于前往创伤中心的地理位置不佳,及时获得救命的创伤护理。AMT带来
甚至在到达创伤之前,地面救护车也无法为患者提供救生护理。
并更快地将患者送往创伤中心接受明确的治疗。如果使用得当,AMT可以
减轻这种分流不足的情况,并在受伤后拯救生命。在偏远的农村地区,AMT的使用也可能保留
为其他患者提供当地应急资源。不必要地使用AMT--过度分类--在UP中发生
至60%的直升机飞行患者只受轻伤,在农村地区也较为常见。一个
AMT分诊不准确的主要原因是缺乏对哪些患者和/或
情况需要使用AMT,这反映在先前文献中使用的测量方法的显著差异中
对于适当的AMT。这使得无法比较或建立在先前工作的基础上,这是一个关键障碍
以改进农村患者的空中医疗分流。不准确的AMT分诊不成比例地影响患者
农村地区服务不足,并产生严重的负面后果:农村患者分诊不足增加了
不把他们送到可以治疗他们受伤的设施,有死亡的风险。过度分类,不必要的AMT,
增加了成本,使这种稀缺的资源对其他需要它的患者不可用,并增加了
病人和船员。AMT撞车事故是一个严重的安全问题,三分之一的撞车事故会造成人员伤亡
相比之下,只有1%的地面救护车坠毁,如果飞行是不必要的,这是一个可以避免的风险。进一步,金额
每次运输的费用超过10,000美元,给患者和医疗系统带来了巨大的经济负担。
该提案寻求通过多个组织的共识来制定受伤后AMT需求的第一个定义
与院前创伤护理和地区性护理提供专家的不同观点。这个项目将
然后使用实际的患者结果来验证该定义。在目标1中,我们将使用基于Web的实时修改
Delphi方法制定了一个一致的标准定义,以保证创伤后AMT。在《目标2》中我们将
评估我们对AMT需求的共识定义的多个方面的有效性。我们将征求反馈意见
农村EMS专业人员对面子效度进行评估并细化定义。然后我们将评估标准的有效性
通过将该定义应用于州创伤登记中的患者,以评估那些确实这样做的人和那些确实这样做的人的结果
不符合定义。这一建议是发展基于证据的空中医疗分诊的基础
指导方针,并将使用这一共识定义为未来的工作提供信息,以前瞻性地验证、实施和
试行空中医疗分类算法。成功完成将改善结果和创伤护理价值,
通过在正确的时间为正确的患者提供正确的护理,减少美国农村地区受伤后的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua B Brown其他文献
Shock Index As a Predictor of Earlier Risk of Vaso-Occlusive Crisis in Trauma Patients with Sickle Cell Disease
- DOI:
10.1182/blood-2024-203619 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Ektha Parchuri;Rida Ashraf;Aqsa Owais;Gabrielle Lapping-Carr;Joshua B Brown - 通讯作者:
Joshua B Brown
The Impact of Multi-System Trauma in Patients with Sickle Cell Disease
- DOI:
10.1182/blood-2022-159851 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Ektha Parchuri;Danielle Gruen;Francis X Guyette;Charles L Jonassaint;Joshua B Brown;Laura Decastro - 通讯作者:
Laura Decastro
Joshua B Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant














{{item.name}}会员




