AWD13299 Admin Supplement to Support Undergraduate Summer Research Experiences
AWD13299 支持本科生暑期研究经历的管理补充
基本信息
- 批准号:10808664
- 负责人:
- 金额:$ 1.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-24 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseBindingBiochemistryCommunicationDataDevelopmentDiseaseDistalDrug resistanceEnzymesEpitopesEvolutionFunctional disorderFundingFutureGuidelinesInsulinaseLibrariesLigandsMachine LearningMapsMolecular ConformationNational Institute of General Medical SciencesNon-Insulin-Dependent Diabetes MellitusPeptide HydrolasesPharmaceutical PreparationsPlayProcessPropertyProteinsProtocols documentationPublicationsRegulationResearchResearch PersonnelRoleSiteStructureStudentsSurfaceTrainingUnited States National Institutes of HealthWorkYeastsbeta secretasedesigndoctoral studentdrug discoveryendoplasmexperienceexperimental studyhigh throughput screeninghuman diseaseimprovedmachine learning algorithmmetrologymutation screeningnanobodiesnext generationnovelprogramsreceptorsummer programsummer researchtherapeutic targetundergraduate student
项目摘要
Project Summary for 1 R35GM146821-01
Although proteases play major roles in disease pathophysiology, a consequential challenge in
protease drug discovery is to design or isolate a specific ligand that selectively inhibits or
activates a target protease. Improving current protease drugs and developing drugs for new
protease targets has proven an iterative, arduous, and often unsuccessful process. Recognizing
that the property of a ligand ultimately dictates its modulatory function and binding mechanism,
the proposed research postulates two hypotheses. First, if molecules are selected directly
based on their modulatory function from large libraries, their properties will directly relate to their
function, rather than their binding capabilities. Second, if the binding mechanism a modulator is
determined, functional relationships between ligand properties and mechanism can be
developed and possibly extended these findings to related proteases. The proposed research
pursues three directions, with an overall objective to transform protease ligand discovery and
protease biochemistry from iterative endeavors to data-driven, and ultimately predictive
processes. The first research direction will establish a machine learning (ML)-guided high-
throughput screening platform that isolates protein-based protease modulators directly based on
how they alter protease function. Here, property-function relationships will train machine
learning algorithms for function prediction and ML-guided library design will significantly reduce
the search space for protease modulators while exploring distal regulation diversity more
comprehensively. In a second research direction, this platform will be extended to isolate
nanobody-based substrate selective modulators of β-secretase and insulin-degrading enzyme,
two proteases that are key therapeutic targets in Alzheimer's disease and Type-2-Diabetes,
respectively. The ability to finely reprogram the substrate selectivity of proteases can
revolutionize how to study and drug polyspecific enzymes and lead to successfully targeting
previously undruggable proteases. The third research direction will implement deep mutational
scanning protocols to map the modulatory landscape of proteases and determine how
modulators alter protease activity and substrate selectivity. This approach will identify
conformational epitopes of modulators, map drug resistance, characterize novel distal sites, and
uncover long-range distal communication. Taken together, the long-term payoff of these studies
is to establish generalizable ligand design guidelines based on ternary relationships between
ligand property, binding mechanism/protease structure and modulatory function, enabling one to
better understand how proteases work and how to control them.
1 R35 GM 146821 -01的项目摘要
尽管蛋白酶在疾病病理生理学中起主要作用,但在疾病诊断和治疗中的相应挑战仍然存在。
蛋白酶药物发现是设计或分离选择性抑制或
激活目标蛋白酶。改进现有的蛋白酶药物和开发新的药物
蛋白酶靶向已被证明是一个反复的、费力的且经常不成功的过程。认识
配体的性质最终决定了其调节功能和结合机制,
这项研究提出了两个假设。首先,如果分子被直接选择
基于来自大型库的它们的调节功能,它们的性质将直接关系到它们的
功能,而不是其约束力。其次,如果调节剂的结合机制是
确定,配体性质和机制之间的函数关系可以
并可能将这些发现扩展到相关的蛋白酶。拟议研究
追求三个方向,总体目标是改变蛋白酶配体的发现,
蛋白酶生物化学从迭代努力到数据驱动,最终预测
流程.第一个研究方向将建立一个机器学习(ML)引导的高
通量筛选平台,其直接基于
它们如何改变蛋白酶功能。在这里,属性-功能关系将训练机器
用于函数预测和ML引导的库设计的学习算法将显著减少
蛋白酶调节剂的搜索空间,同时探索远端调节多样性
全面地在第二个研究方向中,该平台将被扩展以分离
β-分泌酶和胰岛素降解酶的基于纳米抗体的底物选择性调节剂,
这两种蛋白酶是阿尔茨海默病和2型糖尿病的关键治疗靶点,
分别精细地重编程蛋白酶的底物选择性的能力可以
彻底改变了如何研究和药物多特异性酶,并导致成功的靶向
以前不可用的蛋白酶。第三个研究方向将实现深度突变
扫描协议,以绘制蛋白酶的调节景观,并确定如何
调节剂改变蛋白酶活性和底物选择性。该方法将识别
调节剂的构象表位,绘制耐药性,表征新的远端位点,以及
发现远距离远端通讯总的来说,这些研究的长期回报
是建立基于三元关系的可推广的配体设计准则,
配体性质、结合机制/蛋白酶结构和调节功能,使人们能够
更好地了解蛋白酶如何工作以及如何控制它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Denard其他文献
Carl Denard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Denard', 18)}}的其他基金
Reprogramming proteases: tackling human diseases with next-generation modulators
重编程蛋白酶:用下一代调节剂应对人类疾病
- 批准号:
10709575 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Machine Learning-Guided Engineering of Protease Modulators
机器学习引导的蛋白酶调节剂工程
- 批准号:
10353932 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 1.01万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 1.01万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 1.01万 - 项目类别: