Acquistion of multimode plate reader for "Investigation of the physiological significance of protein acetylation in Bacillus subtilis"
购买多模式读板机用于“枯草芽孢杆菌蛋白质乙酰化的生理意义研究”
基本信息
- 批准号:10807381
- 负责人:
- 金额:$ 5.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAcetyltransferaseAddressAffectBacillus subtilisBacteriaBacterial PhysiologyBacterial ProteinsBiochemicalBiological ProcessBiologyCell divisionCell physiologyChromosome StructuresChromosomesCodeDNADeacetylationDevelopmentDrug TargetingDrug ToleranceEnzymesEukaryotaFoundationsGene ExpressionGenetic RecombinationGoalsHistone AcetylationHistone CodeHistonesInvestigationKnowledgeLysineMass Spectrum AnalysisModelingModificationN-terminalPhasePhysiologicalPost-Translational Protein ProcessingProcessProtein AcetylationProtein FamilyProteinsProteomicsReaderRegulationResearchSiteTailTechniquesWorkantimicrobialantimicrobial drugdesigninhibitormembernovelprogramsrepaired
项目摘要
ABSTRACT
Until recently, N-lysine acetylation was thought to be rare in bacteria, but is now appreciated to affect hundreds of
bacterial proteins with diverse cellular functions. Acetylation was initially discovered as a post-translational modification
(PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones. Histone acetylation constitutes part of the
“histone code,” and regulates chromosome compaction and various DNA processes, such as gene expression, replication,
repair and recombination. In eukaryotes, acetylation regulates many other proteins in addition to histones, involved in a
wide array of important biological processes. This observation is also true in bacteria, as evidenced by the characterization
of the acetylomes of more than 30 different bacterial species. However, the physiological significance of the vast majority
of these modifications remains unknown. In addition, the mechanisms of acetylation and deacetylation, and the
bacterial enzymes involved are not completely understood. To address these gaps in knowledge, we have focused on
studying the acetylation of the essential, histone-like protein HBsu in Bacillus subtilis. In bacteria, the nucleoid is
compacted and organized by the action of nucleoid-associated proteins (NAPs). HBsu is a member of the most widely
conserved NAP family, and is considered a functional equivalent of eukaryotic histones. We found that HBsu contains
seven novel acetylation sites, and this raised the exciting possibility that these modifications represent a “histone-like”
code in bacteria. So far, we discovered that acetylation of HBsu at key lysine residues is required to maintain normal
chromosome compaction. Additionally, we identified the second protein acetyltransferase in B. subtilis. The overall goal
of our research program is to decipher this code. Our recent progress supports the hypotheses that acetylation of HBsu
regulates cell division and sporulation, and that there are additional enzymes involved in regulating acetylation. The short-
term goals of this work are to define the enzymatic mechanism of regulation of HBsu acetylation and determine the
significance of HBsu acetylation in the regulation of DNA transactions, stationary phase development and drug tolerance.
Additionally, we will develop new biochemical and mass-spectrometry based proteomics techniques for the study of
acetylation in bacteria. Our long-term goals are to characterize additional HBsu PTMs, identify and characterize novel
enzymes of acetylation, and perform a detailed structural and biochemical analysis with acetylated HBsu and novel
enzymes. Ultimately, we will design novel inhibitors of bacterial acetylation enzymes or acetylated HBsu and assess their
efficacy as potential novel antimicrobial therapies. Together, these studies may demonstrate the existence of a histone-
like code in bacteria, an unexpected and exciting new field of biology. Furthermore, these studies will provide the
foundation for designing novel antimicrobial drugs that target protein acetylation, either the enzymes or key acetylated
targets.
抽象的
直到最近,N赖氨酸乙酰化在细菌中被认为很少见,但现在被认为会影响数百种
具有不同细胞功能的细菌蛋白。乙酰化最初是作为翻译后修饰发现的
(PTM)真核组蛋白的非结构化,高基本的N末端尾巴。组蛋白乙酰化构成了
“组蛋白代码”,并调节染色体压实和各种DNA过程,例如基因表达,复制,
维修和重组。在真核生物中,除组蛋白外,乙酰化调节了许多其他蛋白质
广泛的重要生物过程。这种观察在细菌中也是正确的,如表征所证明
30多种不同细菌物种的乙酰基粒。但是,绝大多数的身体意义
这些修改仍然未知。另外,乙酰化和脱乙酰化的机制,以及
涉及的细菌酶尚不完全了解。为了解决知识中的这些差距,我们专注于
研究枯草芽孢杆菌中必需组蛋白样蛋白HBSU的乙酰化。在细菌中,核苷为
通过核苷相关蛋白(NAP)的作用进行压实和组织。 HBSU是最广泛的成员
保守的午睡家族,被认为是真核组蛋白的功能等效。我们发现HBSU包含
七个新型的乙酰化位点,这提出了这些修饰代表“类似组蛋白”的令人兴奋的可能性
细菌中的代码。到目前为止,我们发现需要在赖氨酸保留处进行HBSU的乙酰化才能保持正常
染色体压实。此外,我们在枯草芽孢杆菌中鉴定了第二个蛋白乙酰转移酶。总体目标
我们的研究计划是破译该代码。我们最近的进展支持HBSU的乙酰化的假设
调节细胞分裂和孢子形成,并在调节乙酰化中涉及其他酶。短 -
这项工作的术语目标是定义调节HBSU乙酰化调节的酶促机理,并确定
HBSU乙酰化在DNA交易,固定相发育和药物耐受性调节中的重要性。
此外,我们将开发新的基于生化和质谱的蛋白质组学技术来研究
细菌中的乙酰化。我们的长期目标是表征其他HBSU PTM,识别和表征新颖
乙酰化酶,并用乙酰化HBSU和新型进行详细的结构和生化分析
酶。最终,我们将设计乙酰化酶或乙酰化HBSU的新型抑制剂,并评估它们
作为潜在的新型抗菌疗法的功效。总之,这些研究可能证明了组蛋白的存在
就像细菌中的代码一样,这是一个意想不到的令人兴奋的生物学领域。此外,这些研究将提供
设计靶向蛋白乙酰化的新型抗菌药物的基础,无论是酶还是关键乙酰化
目标。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The use of next-generation sequencing in personalized medicine.
下一代测序在个性化医疗中的应用。
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Popova,Liya;Carabetta,ValerieJ
- 通讯作者:Carabetta,ValerieJ
Addressing the Possibility of a Histone-Like Code in Bacteria.
- DOI:10.1021/acs.jproteome.0c00442
- 发表时间:2021-01-01
- 期刊:
- 影响因子:4.4
- 作者:Carabetta VJ
- 通讯作者:Carabetta VJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie Jean Carabetta其他文献
Valerie Jean Carabetta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerie Jean Carabetta', 18)}}的其他基金
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10436383 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10247780 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10028562 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10659029 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
相似国自然基金
N-乙酰转移酶NAT10调控胰岛β细胞功能的作用和机制研究
- 批准号:82370825
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
乙酰转移酶ESCO1促进耐药分子mRNA出核诱导三阴乳腺癌紫杉醇耐药的机制研究
- 批准号:82373369
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
3’tRNA衍生片段tRF-Val靶向EEF1A1招募乙酰转移酶KAT5和HSP90AB1复合物促进胃癌进展的机制
- 批准号:82302959
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组蛋白乙酰转移酶P300招募TET1共同调控ZNF334基因表达在结直肠癌生长中的机制研究
- 批准号:82302970
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SCML4协同乙酰化转移酶HBO1促进Trm表观遗传修饰增强抗肿瘤免疫的分子机制研究
- 批准号:82303153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Epigenetic mechanisms of histone methyltransferase ASH1L in autism spectrum disorder
组蛋白甲基转移酶 ASH1L 在自闭症谱系障碍中的表观遗传机制
- 批准号:
10743048 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Investigating essential chromatin regulators in cancers with SWI/SNF mutations
研究具有 SWI/SNF 突变的癌症中的必需染色质调节因子
- 批准号:
10607451 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Development of First-in-Class PDE5/HAT Directed LigandsModulating Molecular Pathways involved in Synaptic Plasticity
开发一流的 PDE5/HAT 定向配体调节参与突触可塑性的分子途径
- 批准号:
10654103 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别: