Biophysics of fluid lipid/protein membrane domains and immune cell signaling
流体脂质/蛋白质膜结构域和免疫细胞信号传导的生物物理学
基本信息
- 批准号:7385822
- 负责人:
- 金额:$ 21.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-12-01 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAllergensAllergicAmericanAntibodiesAntigensAreaBasophilic leukemiaBehaviorBindingBiochemicalBiologicalBiophysicsCatalytic DomainCell LineCell membraneCell modelCellsCellular MembraneClassComplementComplexConditionConsensusCytolysisDataDependenceDetergentsDevelopmentEffector CellEventFluorescenceFluorescence MicroscopyHealthcare SystemsHeterogeneityHormonalHypersensitivityIgEIgE ReceptorsImageImmuneImmune responseImmune systemInflammationJurkat CellsLabelLasersLateralLeadLifeLinkLipidsLiquid substanceLiteratureLymphocyteMagicMammalian CellMass Spectrum AnalysisMature B-LymphocyteMeasuresMechanicsMediatingMediator of activation proteinMembraneMembrane ProteinsMethodsMicroscopicModelingMolecularMolecular CloningNMR SpectroscopyOpticsOrganellesPartition CoefficientPathway interactionsPhasePhysiologicalPlayPropertyProtein Binding DomainProteinsRattusReactionRegulationResearchResolutionRoleScanningSignal PathwaySignal TransductionSignaling ProteinSymptomsT-LymphocyteTemperatureTertiary Protein StructureTestingTherapeuticTherapeutic InterventionThermodynamicsTransition TemperatureVesiclecalcium indicatorcostcrosslinkfluorescence imagingmast cellmathematical modelmembrane modelnovel strategiespreferencepreventprotein distributionreceptorresponsesize
项目摘要
DESCRIPTION (provided by applicant): The long-term objective of this project is to enhance the understanding of the earliest events in the response of immune system cells towards the presence of allergens (antigens). The initial effector cells in hypersensitive reactions to allergen invasion are mast cells. The signaling pathways in these cells that lead to degranulation and secretion of hormonal mediators causing inflammation and the symptoms of allergic hypersensitivity are well-understood overall, except for the mechanisms involved in initiating these pathways. It is widely accepted that cross-linking by multivalent antigen of IgE antibodies that are bound to the high affinity IgE receptor Fc5RI is necessary for stimulating degranulation by this receptor. How this cross-linking event is recognized at the inner plasma membrane leaflet, however, is not well understood. Biophysical elucidation of transmembrane signal transduction therefore has the potential to contribute to identifying strategies for therapeutic interference with pathological immune cell signaling. A large literature exists emphasizing the role of intra-membrane compositional heterogeneities in cell signaling. Dynamic compositional lateral heterogeneity is a necessary consequence of the non-ideal mixing properties of biological membranes, however, the functional importance of compositional fluctuations, or domains, is unclear. A major hindrance for progress in this important field of research is the conceptual division between the large experimental areas of lipid model membrane and cellular membrane research. We are using a novel approach to examine plasma membrane heterogeneity, consisting of optical microscopic and spectroscopic characterization of micron-sized plasma membrane vesicles obtained from immune cells. Our preliminary data indicate that the membranes of these vesicles can segregate into laterally coexisting fluid domains. Aim #1 is to characterize, by 1H MAS NMR and fluorescence imaging, the biophysics of fluid domain formation in plasma membranes depending on plasma membrane composition and a variety of additional physiologically relevant control parameters, including receptor crosslinking. This characterization will prepare us to achieve Aim #2 where we will quantitatively examine, by confocal fluorescence microscopy, the molecular details of how signaling proteins distribute among membrane domains. The resulting partition coefficients will allow for critical re-examination of current models for transmembrane signaling transduction, as well as motivate the development of mathematical models for the fine tuning of signaling fidelity by dynamic compositional heterogeneities. In Aim #3, we will compare the conditions governing domain formation in plasma membrane vesicles to cell signaling capacities in live cells and will clarify whether membrane composition poised near a mixing/demixing transition is an important principle in amplifying immune response to stimulation. Allergies affect more than 50 million Americans and cause significant suffering and costs to the health care system[1]. The absence of curing treatments is due in part to the lack of understanding how allergens stimulate immune system responses. Our research has the potential to elucidate mechanistic aspects of the earliest molecular events following allergen invasion and could therefore help identify strategies for preventing and treating allergic hypersensitivity.
描述(由申请人提供):本项目的长期目标是增强对免疫系统细胞对过敏原(抗原)存在的反应中最早事件的理解。在过敏原入侵的过敏反应中,最初的效应细胞是肥大细胞。这些细胞中导致脱粒和分泌激素介质引起炎症和过敏性超敏反应症状的信号传导途径总体上已得到充分理解,但启动这些途径的机制除外。广泛接受的是,通过与高亲和力IgE受体Fc 5 RI结合的IgE抗体的多价抗原交联对于刺激该受体的脱粒是必需的。然而,这种交联事件是如何在内质膜小叶被识别的,还不清楚。因此,跨膜信号转导的生物物理学阐明有可能有助于识别用于治疗性干扰病理性免疫细胞信号传导的策略。大量的文献强调了膜内组成不均一性在细胞信号传导中的作用。动态成分的横向异质性是生物膜的非理想混合特性的必然结果,然而,成分波动或域的功能重要性尚不清楚。在这一重要研究领域取得进展的一个主要障碍是脂质模型膜和细胞膜研究的大型实验领域之间的概念划分。我们正在使用一种新的方法来检查质膜异质性,包括从免疫细胞获得的微米级质膜囊泡的光学显微镜和光谱表征。我们的初步数据表明,这些囊泡的膜可以分离成横向共存的流体域。目的#1是通过1H MAS NMR和荧光成像表征质膜中流体域形成的生物物理学,这取决于质膜组成和各种其他生理相关的控制参数,包括受体交联。这种表征将为我们实现目标2做好准备,其中我们将通过共聚焦荧光显微镜定量检查信号蛋白如何在膜结构域之间分布的分子细节。由此产生的分配系数将允许关键的重新检查目前的跨膜信号转导模型,以及激励发展的数学模型的微调信号保真度的动态组成的异质性。在目标#3中,我们将比较质膜囊泡中结构域形成的条件与活细胞中的细胞信号传导能力,并将阐明在混合/分层过渡附近保持平衡的膜组成是否是放大对刺激的免疫应答的重要原则。过敏症影响超过5000万美国人,并给医疗保健系统造成重大痛苦和成本[1]。缺乏治愈治疗的部分原因是缺乏对过敏原如何刺激免疫系统反应的了解。我们的研究有可能阐明过敏原入侵后最早的分子事件的机制方面,因此可以帮助确定预防和治疗过敏性超敏反应的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tobias Baumgart其他文献
Tobias Baumgart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tobias Baumgart', 18)}}的其他基金
Membrane shape transition control in cellular membrane trafficking phenomena
细胞膜运输现象中的膜形状转变控制
- 批准号:
9120160 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Membrane shape transition control in cellular membrane trafficking phenomena
细胞膜运输现象中的膜形状转变控制
- 批准号:
10167604 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Membrane shape transition control in cellular membrane trafficking phenomena
细胞膜运输现象中的膜形状转变控制
- 批准号:
10477946 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Mechanisms of Curvature Sensing and Generation by Peripheral Membrane Proteins
外周膜蛋白曲率传感和产生的机制
- 批准号:
8536330 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Membrane shape transition control in cellular membrane trafficking phenomena
细胞膜运输现象中的膜形状转变控制
- 批准号:
9281764 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Membrane shape transition control in cellular membrane trafficking phenomena
细胞膜运输现象中的膜形状转变控制
- 批准号:
10798657 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Membrane shape transition control in cellular membrane trafficking phenomena
细胞膜运输现象中的膜形状转变控制
- 批准号:
10214630 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Mechanisms of Curvature Sensing and Generation by Peripheral Membrane Proteins
外周膜蛋白曲率传感和产生的机制
- 批准号:
8727055 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Mechanisms of Curvature Sensing and Generation by Peripheral Membrane Proteins
外周膜蛋白曲率传感和产生的机制
- 批准号:
8323294 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
Mechanisms of Curvature Sensing and Generation by Peripheral Membrane Proteins
外周膜蛋白曲率传感和产生的机制
- 批准号:
8194640 - 财政年份:2011
- 资助金额:
$ 21.04万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Continuing Grant