NUMERICAL SIMULATIONS TO STUDY THE ROLE OF BIOMECHANICS IN TACTILE SENSATION
研究生物力学在触觉中的作用的数值模拟
基本信息
- 批准号:8364342
- 负责人:
- 金额:$ 0.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAuditoryBiomechanicsBiomedical ResearchCaenorhabditis elegansCodeCutaneousDataElementsEsthesiaFingersFundingGoalsGrantHigh Performance ComputingHumanInvestigationJournalsLiteratureLocationMechanical StimulationMechanicsMechanoreceptorsMethodsModelingMonkeysNational Center for Research ResourcesNatureNematodaNerveNeuronsNeurosciencesPlayPrimatesPrincipal InvestigatorPropertyResearchResearch InfrastructureResearch PersonnelResourcesRoleSeriesShapesSignal TransductionSimulateSkinSkin TissueSourceStimulusStressStructureSubcutaneous TissueSupercomputingSurfaceSystemTactileTissuesTouch sensationUnited States National Institutes of HealthVisualWorkabstractingbasebiomechanical engineeringcostenergy densityepithelial Na+ channelfollow-upinformation processingnanoneurophysiologyreceptorrelating to nervous systemresearch studyresponsesimulationsomatosensorysymposiumtwo-dimensional
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Numerical Simulations to Study the Role of Biomechanics in Tactile sensation PI: Dr. Mandayam A. Srinivasan, Director, MIT Touch Lab Abstract The biomechanics of skin tissues play a major role in the human tactile mechanisms. When our fingers come in contact with an object, surface loads imposed on the finger pad are transmitted to embedded nerve terminals (mechanoreceptors) in the skin tissues. These mechanoreceptors generate neural codes of the mechanical signals, enabling us to feel the object. Unlike visual and auditory mechanisms, modeling tactile encoding mechanisms has been a challenge and is as yet an unsolved problem. To better understand the mechanics of contact between the skin and an object, it is imperative to have a good understanding of the mechanical properties of the underlying tissues. To gauge the role of skin biomechanics in tactile response, two dimensional (Srinivasan and Dandekar, 1996; Maeno et al, 1998) and three dimensional finite element (FE) models (Dandekar, Raju and Srinivasan, 2003) of the human and monkey fingertips with realistic external geometry and internal layered structure of the skin and subcutaneous tissues have been developed using linear elastic models of the underlying tissue. These models enabled researchers to estimate the stress state at mechanoreceptor locations and relate it to the mechanoreceptor neural response. Dandekar et al. (2003) hypothesized that the strain energy density at a mechanoreceptor location is a good candidate to be the relevant stimulus for SA-I mechanoreceptors. The 3D finite element simulations for this study were conducted using the resources at the NSF Pittsburgh supercomputing Center. The present study is a follow up to the work done by Dandekar et al. (2003) which was based on purely elastic material models. The goal of present study is to develop viscoelastic finite element models (using ADINA) of the primate finger capable of predicting rate dependent mechanoreceptor responses to dynamic loading. In addition to this we will utilize similar methods to study the biomechanics of a new model organism, the nematode, C.elegans. We have recently completed experiments to characterize the viscoelastic properties of primate fingertip and elastic properties of C. elegans tissue through micro and nano mechanical stimulation. In addition, we have data on the surface deflection of primate fingertips to line loads (Srinivasan, 1989). The present work will be focused at developing realistic finite element models for the primate finger and the worm, calibrating these models by simulating the indentation experiments in ADINA and matching the model response with available experimental data (line load surface deflection data (Srinivasan, 1989) as well as force response from our indentation experiments). These calibrated models will then be used to predict biomechanical and neurophysiological response of mechanoreceptors and match with data already present in literature (Srinivasan and Lamotte, 1991 and OHagan et al, 2004). References Dandekar, K., B.I. Raju and M.A. Srinivasan, (2003). "3-D Finite-Element Models of Human and Monkey Fingertips to Investigate the Mechanics of Tactile Sense." Journal of Biomechanical Engineering, Vol. 125, pp. 682-691, ASME Press. Maeno, T., Kobayashi, K., and Yamazaki, N., (1998), Relationship Between the Structure of Human Finger Tissue and the Location of Tactile Receptors, JSME Int. J., 41, pp. 94100. Srinivasan, M.A., (1989). Surface deflection of primate fingertip under line load. Journal of Biomechanics 22, 343349. Srinivasan, M. A. and K. Dandekar (1996). "An investigation of the mechanics of tactile sense using two dimensional models of the primate fingertip." Journal of Biomechanical Engineering 118: 48-55. Srinivasan, M. A. and R. H. LaMotte (1991). Encoding of shape in the responses of cutaneous mechanoreceptors. Information Processing in the Somatosensory System. Wenner-Gren Intl. Symposium Series. O. Franzen and J. Westman, Macmillan Press. O'Hagan R, Chalfie M, Goodman MB, (2005). "The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals". Nature Neuroscience; 8 (1): 43-50
这个子项目是利用这些资源的众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANDAYAM A SRINIVASAN其他文献
MANDAYAM A SRINIVASAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANDAYAM A SRINIVASAN', 18)}}的其他基金
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8728243 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
7986453 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8323490 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8547812 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8133826 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Hands-On Virtual Reality Technology for Clinical Education and Training
用于临床教育和培训的实践虚拟现实技术
- 批准号:
8004524 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
Hands-On Virtual Reality Technology for Clinical Education and Training
用于临床教育和培训的实践虚拟现实技术
- 批准号:
7404633 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
Hands-On Virtual Reality Technology for Clinical Education and Training
用于临床教育和培训的实践虚拟现实技术
- 批准号:
8138336 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists