DEVELOPMENT OF SOFTWARE COMPONENTS TO SUPPORT PARALLEL ADAPTIVE MULTISCALE ANAL
开发支持并行自适应多尺度分析的软件组件
基本信息
- 批准号:8364223
- 负责人:
- 金额:$ 0.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnusArchitectureBiomedical EngineeringBiomedical ResearchChargeComplexComputer softwareComputersComputing MethodologiesDevelopmentEngineeringEquilibriumFundingGenesGrantHigh Performance ComputingInternationalJournalsKnowledgeManuscriptsMechanicsMethodsModelingModificationNational Center for Research ResourcesOperating SystemPostdoctoral FellowPrincipal InvestigatorReportingResearchResearch InfrastructureResearch PersonnelResourcesRunningScienceScientistServicesSlaveSourceStudentsSupercomputingTechniquesUnited States National Institutes of HealthWeightWorkWritingbiological systemscostdata managementexperienceindexinginterestmodels and simulationparallel computerprogramsscale upsoft tissuesoftware developmentsupercomputerweb site
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
This work is part of a research effort of the Scientific Computation Research Center (SCOREC) which focuses on developing software components to support the parallel adaptive analysis of complex physical and biological systems. The two aims of this project are described as follows: Creation of a group of research dedicated to the development of parallel application to be solved on supercomputers: The group of researchers is made of a senior research associate, a CCNI computer scientist, three graduate and two undergraduate students. This group already has some experience in developing and running applications on a supercomputer made available to RPI researchers (CCNI: Blue Gene L architecture with 32,000 processors). The first aim of this project is to support the creation of a group of supercomputing experts who will be in charge of disseminating knowledge to other students and researchers through: The development of a website providing tutorials and promoting best practices to be used by all RPI students interested in research in supercomputing. Monthly seminars opened to all RPI students and researchers. Writing yearly report summarizing research progress. Implementation of a scalable multiscale hierarchic bioengineered application: Is supported by the development of a suite of parallel software components (Fields, Model, Domain, Error estimation, Adaptation) that are brought together to support the adaptive analysis of complex physical and biological systems [1]. Each software component, which supports a specific set of functionalities, is individually developed to support its execution on massively parallel computers. Such a strategy has been successfully implemented using a master/slave approach to model the simulation of bioengineered material using a hierarchic multiscale approach [2]. As the master/slave model is not well suited to scale on massively parallel computers, part of our on going research effort is to develop a new parallel multiscale paradigm efficiently combining: Multiscale hierarchic analysis using a solver that extends PHASTA strategy [3] which demonstrated scalability up to 300,000 processors by incorporating local instances of linear algebraic solvers [4]. Error estimation using a parallel version of the Zhu-Zienkewicz SPR technique [5]. Mesh [6] and model adaptations [7] that already demonstrated scaling up to 32,000 processors. Multiscale load balancing that consists of estimating the multiscale weights to be used by the mesh partitioner [8]. [1] F. Delalondre, C. Smith, M.S. Shephard, Collaborative software infrastructure to support adaptive multiple model simulation, Computer Methods in Applied Mechanics and Engineering, accepted manuscript, 2010. [2] X.-J. Luo, T. Stylianopoulos, V.H. Barocas, M.S. Shephard, Multiscale computation for bioartificial soft tissues with complex geometries, Engineering with Computers, Volume 25, Number 1, 87-95, [3] O. Sahni, C.D. Carothers, M.S. Shephard and K.E. Jansen, Strong Scaling Analysis of a Parallel, Unstructured, Implicit Solver and the Influence of the Operating System Interference, Scientific Programming, 17 (3), 261-274. [4] Portable, Extensible Toolkit for? Scientific Computation (PETSc), http://www.mcs.anl.gov/petsc/petsc-as/index.html [5] O. C. Zienkewicz and J. G. Zhu, A simple error estimator and adaptive strategy for practical engineering analysis, International Journal for Numerical Methods in Engineering, vol. 24, 1987, pp. 337-357. [6] F. Alauzet, X. Li, E.S. Seol, M.S. Shephard, Parallel anisotropic 3D mesh adaptation by mesh modification, Eng. Comput., 21 (2006) 247258 [7] M.A. Nuggehally, C.R. Picu, M.S. Shephard, Adaptive Model Selectionprocedure for Concurrent Multiscale Problems, Journal of Multiscale Computational Enginnering. 2007, (5), 369-386. [8] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, ? Zoltan: Data Management Services for Parallel Dynamic Applications, Computing in Science and Engineering, ?2002, ?(4), ?2, ?90-97.
这个子项目是利用这些资源的众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FABIEN DELALONDRE其他文献
FABIEN DELALONDRE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 0.11万 - 项目类别:
Standard Grant