Design of an Implantable Pump Insulin
植入式胰岛素泵的设计
基本信息
- 批准号:7600456
- 负责人:
- 金额:$ 31.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAffinityAgitationAirAnimalsArizonaArtificial Endocrine PancreasBindingBiochemistryBiologicalBiological AssayBiophysicsBlood GlucoseC-PeptideCardiovascular systemCell Culture TechniquesCell NucleusChemicalsChimera organismClassificationClinicalClinical InvestigatorClinical TrialsCollaborationsCystineDataDevelopmentDiabetes MellitusDiabetic AngiopathiesDiabetic NeuropathiesDimerizationDiseaseDoctor of MedicineDrug FormulationsDrug KineticsElectron MicroscopyEmployee StrikesEpidemiologyEventExhibitsFDA approvedFamily suidaeFigs - dietaryFluorescence SpectroscopyFoundationsFutureGlassGlycerolGoalsGreater sac of peritoneumHepaticHumanHypoglycemiaImplantImplantable PumpIn VitroIncidenceInflammationInjection of therapeutic agentInsulinInsulin Infusion SystemsInsulin ReceptorInsulin-Dependent Diabetes MellitusInsulin-Like Growth Factor IInsulin-Like Growth Factor ReceptorInsulin-Like-Growth Factor I ReceptorInterventionIsotopesKidney DiseasesKidney FailureKnowledgeLabelLengthLettersLiquid substanceMaintenanceMechanicsMediatingMicroscopyModelingMolecularNMR SpectroscopyNon-Insulin-Dependent Diabetes MellitusObstructionOrangesOutcomePatientsPeritonealPhenolsPhysiologicalPlayPreparationProblem SolvingProinsulinPropertyProtein EngineeringProteinsPumpRattusRecipeRefractoryRelative (related person)Replacement TherapyResearchResistanceResolutionRetinal DiseasesRiskSafetySeriesSiteSolidSolutionsSolventsStructureStudy SectionSurfaceSystemTechnologyTestingTimeTranslationsUnited KingdomUniversitiesWound HealingX-Ray CrystallographyZincabsorptionamyloid formationamyloidogenesisanalogbaseblood glucose regulationchemical synthesiscrosslinkdesigndiabetes controlfollow-upfrontierglobular proteinglycemic controlin vitro Assayin vivoinnovationinterestmeetingsminiproinsulinmonomernovelnovel strategiespolypeptidepreventprospectiveprotein aggregationprotein aminoacid sequenceprotein misfoldingprotein structurepsychologicpublic health relevancereceptor bindingsmall moleculesolid state nuclear magnetic resonancesuccesssurfactanttherapeutic proteintrend
项目摘要
DESCRIPTION (provided by applicant): The central goal of insulin replacement therapy in the treatment of diabetes mellitus (DM) is tight control of blood glucose concentrations. Clinical trials, including the landmark Diabetes Control & Complications Trial (DCCT) and follow-up Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC), have documented in Type 1 DM the benefit of tight glycemic control in reducing the risk and delaying the progression of long-term cardiovascular and microvascular complications, including diabetic neuropathy, retinopathy, and renal disease. Similar trends are observed in Type 2 DM. These data have motivated extensive efforts to develop an implantable insulin pump for regulated peritoneal deliver. To date, however, implantable pumps remain experimental due to the problem of pump occlusion associated with insulin fibrillation. The objective of this application is to design an optimal insulin analog and insulin formulation for safe and effective use in an implantable pump. The proposed design strategy, based on general scientific principles of protein structure, employs single-chain insulin analogs. Despite their many theoretical advantages and promising clinical trials, implantable insulin pumps are presently not approved by the FDA. A major problem is posed by the limited stability of present insulin formulations as stored for 1-3 months within the pump reservoir at 37 oC within the peritoneal cavity. Such instability causes aberrant protein aggregation, which frequently impairs insulin delivery due to partial or complete obstruction of the pump. This problem is more severe with use of rapid-acting insulin analogs (HumalogTM (Lilly) and NovalogTM (Novo-Nordisk)), whose favorable pharmacokinetic properties otherwise offer significant advantages for use in external insulin pumps. The perfect pump insulin for an implantable system would combine rapid pharmacokinetics with long-term stability at high protein concentration as stored in a pump reservoir with gentle agitation at 37 oC. Because the propensity of insulin to misfold and undergo aberrant aggregation has seemed intrinsic to its structure, past research efforts have focused on alternative approaches: development of novel tubing materials or small-molecule surfactants to add to the insulin solution. Although some progress has been obtained, clinical success has been elusive. We propose a novel approach to the design of insulin analogs based on the topological requirements of aberrant insulin aggregation and fibrillation. The essential idea is based on our recent foundational studies of proinsulin and the mechanism of insulin fibrillation (Huang, K. et al. J. Biol. Chem. 280, 42345-55 (2005) and Huang, K. et al. Biochemistry 45, 10278-93 (2006)). These studies demonstrate a profound effect of the connecting peptide on the propensity of single-chain insulin analogs to undergo aberrant aggregation, including surface-induced fibrillation at 37 C as occurs in occluded pumps. We propose to exploit these observations to design an optimal pump insulin, designing out fibrillation while } designing in} rapid action with high insulin activity and low IGF-related mitogenicity. Design principles will be validated through a series of functional assays and molecular studies to provide a solid scientific foundation for clinical translation. PUBLIC HEALTH RELEVANCE: The central objective of insulin replacement therapy in the treatment of Diabetes is glycemic control, i.e., regulation of blood glucose to near-physiological levels. The clinical importance of this tight control has motivated extensive efforts to develop an insulin pump implanted in the body to provide regulated peritoneal delivery of insulin; however, to date, implantable pumps remain experimental due to pump blockage associated with insulin aggregation. The objective of this application is to design an optimal insulin analog for safe and effective use in an implantable pump.
描述(由申请方提供):胰岛素替代疗法治疗糖尿病(DM)的中心目标是严格控制血糖浓度。临床试验,包括具有里程碑意义的糖尿病控制和并发症试验(DCCT)和后续糖尿病干预和并发症流行病学研究(DCCT/EDIC),已经证明了1型糖尿病患者严格血糖控制在降低风险和延迟长期心血管和微血管并发症(包括糖尿病神经病变,视网膜病变和肾脏疾病)进展方面的益处。在2型DM中观察到类似的趋势。这些数据促使人们做出了大量努力来开发用于调节腹膜输送的可植入胰岛素泵。然而,迄今为止,由于与胰岛素纤维性颤动相关的泵阻塞问题,可植入泵仍处于实验阶段。本申请的目的是设计一种最佳的胰岛素类似物和胰岛素制剂,以安全有效地用于植入式泵。所提出的设计策略,基于蛋白质结构的一般科学原理,采用单链胰岛素类似物。尽管有许多理论优势和有前途的临床试验,但植入式胰岛素泵目前尚未获得FDA批准。一个主要问题是,目前的胰岛素制剂在腹膜腔内37 ° C的泵储液器中储存1-3个月时稳定性有限。这种不稳定性会导致异常的蛋白质聚集,从而经常因泵的部分或完全阻塞而损害胰岛素输送。使用速效胰岛素类似物(HumalogTM(Lilly)和NovalogTM(Novo-Nordisk))时,该问题更加严重,其有利的药代动力学特性另外提供了用于外部胰岛素泵的显著优势。用于植入式系统的完美泵胰岛素将联合收割机将快速药代动力学与高蛋白浓度下的长期稳定性结合起来,储存在泵储液器中,并在37 ° C下轻轻搅拌。由于胰岛素错误折叠和发生异常聚集的倾向似乎是其结构所固有的,因此过去的研究工作集中在替代方法上:开发新型管材或小分子表面活性剂以添加到胰岛素溶液中。虽然取得了一些进展,但临床成功一直难以捉摸。我们提出了一种新的方法来设计胰岛素类似物的基础上异常胰岛素聚集和纤维化的拓扑要求。基本思想是基于我们最近对胰岛素原和胰岛素纤维化机制的基础研究(Huang,K.等人J. Biol. Chem. 280,42345-55(2005)和Huang,K.等人Biochemistry 45,10278-93(2006))。这些研究表明,连接肽对单链胰岛素类似物发生异常聚集的倾向有深远的影响,包括在37 ℃下发生在阻塞泵中的表面诱导的纤维化。我们建议利用这些观察结果来设计最佳泵胰岛素,设计出纤维性颤动,同时设计出具有高胰岛素活性和低IGF相关促有丝分裂性的快速作用。设计原则将通过一系列功能测定和分子研究进行验证,为临床翻译提供坚实的科学基础。公共卫生相关性:胰岛素替代疗法治疗糖尿病的中心目标是血糖控制,即,将血糖调节至接近生理水平。这种严格控制的临床重要性促使人们做出了大量努力来开发植入体内的胰岛素泵,以提供胰岛素的调节性腹膜递送;然而,迄今为止,由于与胰岛素聚集相关的泵堵塞,植入式泵仍处于实验阶段。本申请的目的是设计一种最佳胰岛素类似物,用于植入式胰岛素泵中安全有效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL Aaron WEISS其他文献
MICHAEL Aaron WEISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL Aaron WEISS', 18)}}的其他基金
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant